Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jyh-Ping Hsu is active.

Publication


Featured researches published by Jyh-Ping Hsu.


Journal of Colloid and Interface Science | 2013

Influence of metal oxide nanoparticles concentration on their zeta potential.

Nan Wang; Chien Hsu; Lihua Zhu; Shiojenn Tseng; Jyh-Ping Hsu

In an attempt to estimate the zeta potential of various metal oxide nanoparticles (NPs) dispersed in water, it is interesting to observe that both the magnitude and the sign of this property depend highly upon their concentration. For example, in the case of naked TiO2 at pH 6, the zeta potential increased from -6.7 to 8.2 mV as the particle concentration varied from 0.5 to 5 mg L(-1). As a result, the isoelectric points of naked TiO2, Fe3O4, Fe(OH)3, and Al2O3-coated TiO2 could deviate ca. one, one, two, and three pH units, respectively, depending upon the particle concentration. We showed that these behaviors arise mainly from that the dissolved ambient CO2 reacts with the particle surface functional groups to form M-OCO2(-), which neutralizes or even overcompensates the particle surface charge. The surface density of M-OCO2(-), [M-OCO2(-)](s) depends upon the particle concentration; if it is sufficiently high, [M-OCO2(-)](s) becomes negligible, so is its influence on the zeta potential. We concluded that the zeta potential measurements for the tested NPs are reliable only if their concentration exceeds a certain level. This also applies to other metal oxides or hydroxides, the surface of which reacts appreciably with dissolved CO2. The results gathered are of practical significance in estimating the surface properties of unknown and/or newly synthesized NPs since conventional measurements are usually made at dilute particle concentrations.


Analytical Chemistry | 2012

Controlling pH-Regulated Bionanoparticles Translocation through Nanopores with Polyelectrolyte Brushes

Li-Hsien Yeh; Mingkan Zhang; Sang W. Joo; Shizhi Qian; Jyh-Ping Hsu

A novel polyelectrolyte (PE)-modified nanopore, comprising a solid-state nanopore functionalized by a nonregulated PE brush layer connecting two large reservoirs, is proposed to regulate the electrokinetic translocation of a soft nanoparticle (NP), comprising a rigid core covered by a pH-regulated, zwitterionic, soft layer, through it. The type of NP considered mimics bionanoparticles such as proteins and biomolecules. We find that a significant enrichment of H(+) occurs near the inlet of a charged solid-state nanopore, appreciably reducing the charge density of the NP as it approaches there, thereby lowering the NP translocation velocity and making it harder to thread the nanopore. This difficulty can be resolved by the proposed PE-modified nanopore, which raises effectively both the capture rate and the capture velocity of the soft NP and simultaneously reduces its translocation velocity through the nanopore so that both the sensing efficiency and the resolution are enhanced. The results gathered provide a conceptual framework for the interpretation of relevant experimental data and for the design of nanopore-based devices used in single biomolecules sensing and DNA sequencing.


Langmuir | 2012

Importance of temperature effect on the electrophoretic behavior of charge-regulated particles.

Jyh-Ping Hsu; Yi-Hsuan Tai; Li-Hsien Yeh; Shiojenn Tseng

The Joule heating effect is inevitable in electrophoresis operations. To assess its influence on the performance of electrophoresis, we consider the case of a charge-regulated particle in a solution containing multiple ionic species at temperatures ranging from 298 to 308 K. Using an aqueous SiO(2) dispersion as an example, we show that an increase in the temperature leads to a decrease in both the dielectric constant and the viscosity of the liquid phase, and an increase in both the diffusivity of ions and the particle surface potential. For a particle having a constant surface potential, its electrophoretic mobility is most influenced by the variation in the liquid viscosity as the temperature varies, but for a charged-regulated particle both the liquid viscosity and the surface potential can play an important role. Depending upon the level of pH, the degree of increase in the mobility can be on the order of 40% for a 5 K increase in the temperature. The presence of double-layer polarization, which is significant when the surface potential is sufficiently high, has the effect of inhibiting that increase in the mobility. This implies that the influence of the temperature on the mobility of the particle is most significant when the pH is close to the point of zero charge.


Langmuir | 2013

Capillary osmosis in a charged nanopore connecting two large reservoirs.

Kuan-Liang Liu; Jyh-Ping Hsu; Shiojenn Tseng

Experimental evidence revealed that the performance of nanopore-based biosensing devices can be improved by applying a salt concentration gradient. To provide a theoretical explanation for this observation and explore the mechanisms involved, we model the capillary osmosis (or diffusioosmosis) in a charged solid-state nanopore connecting two large reservoirs. The effects of nanopore geometry and the reservoir salt concentrations are examined. We show that the capillary osmotic flow is from the high salt concentration reservoir to the low salt concentration one, and its magnitude has a maximum as the reservoir salt concentrations vary. In general, the shorter the nanopore and/or the smaller its radius, the faster the osmotic flow. This flow enhances the current recognition, and the ion concentration polarization across nanopore openings raises the entity capture rate, thereby being capable of improving the performance of electrophoresis-based biosensors. The results gathered provide necessary information for designing nanopore-based biosensor devices.


Electrophoresis | 2012

Diffusiophoresis of a polyelectrolyte in a salt concentration gradient

Kuan-Liang Liu; Jyh-Ping Hsu; Wei-Lun Hsu; Li-Hsien Yeh; Shiojenn Tseng

The diffusiophoresis of a polyelectrolyte subject to an applied salt concentration gradient is modeled theoretically. The entirely porous type of particle is capable of simulating entities such as DNA, protein, and synthetic polymeric particles. The dependence of the diffusiophoretic behavior of the polyelectrolyte on its physical properties, and the types of ionic species and their bulk concentrations are discussed in detail. We show that in addition to the effects coming from the polarization of double layer and the difference in the ionic diffusivities, the polarization of the condensed counterions inside the polyelectrolyte might also be significant. The last effect, which has not been reported previously, reduces both the electric force and the hydrodynamic force acting on the polyelectrolyte. Both the direction and the magnitude of the diffusiophoretic velocity of the polyelectrolyte are found to highly depend upon its physical properties. These results provide valuable references for applications such as DNA sequencing and catalytic nano‐ or micromotors.


Langmuir | 2013

Electrophoresis of Deformable Polyelectrolytes in a Nanofluidic Channel

Shiojenn Tseng; Chih-Yuan Lin; Jyh-Ping Hsu; Li-Hsien Yeh

The influence of the shape of a polyelectrolyte (PE) on its electrophoretic behavior in a nanofluidic channel is investigated by considering the translocation of a deformable ellipsoidal PE along the axis of a cylindrical nanochannel. A continuum model comprising a Poisson equation for the electric potential, Nernst-Planck equations for the ionic concentrations, and modified Stokes equations for the flow field is adopted. The effects of the PE shape, boundary, bulk ionic concentration, counterion condensation, electroosmotic retardation flow, and electroosmotic flow (EOF) on the PE mobility are discussed. Several interesting behaviors are observed. For example, if the nanochannel is uncharged and the double layer is thick, then the PE mobility increases (decreases) with increasing double-layer thickness for a smaller (larger) boundary, which has not been reported previously. If the nanochannel is negatively charged and the double layer is thick, then a negatively charged PE moves in the direction of the applied electric field. The results gathered provide necessary information for both the interpretation of experimental data and the design of nanochannel-based sensing devices.


Langmuir | 2012

Electrophoresis of a particle at an arbitrary surface potential and double layer thickness: importance of nonuniformly charged conditions.

Jyh-Ping Hsu; Hsiao-Ting Huang; Li-Hsien Yeh; Shiojenn Tseng

Recent advances in material science and technology yield not only various kinds of nano- and sub-micro-scaled particles but also particles of various charged conditions such as Janus particles. The characterization of these particles can be challenging because conventional electrophoresis theory is usually based on drastic assumptions that are unable to realistically describe the actual situation. In this study, the influence of the nonuniform charged conditions on the surface of a particle at an arbitrary level of surface potential and double layer thickness on its electrophoretic behavior is investigated for the first time in the literature taking account of the effect of double-layer polarization. Several important results are observed. For instance, for the same averaged surface potential, the mobility of a nonuniformly charged particle is generally smaller than that of a uniformly charged particle, and the difference between the two depends upon the thickness of double layer. This implies that using the conventional electrophoresis theory may result in appreciable deviation, which can be on the order of ca. 20%. In addition, the nonuniform surface charge can yield double vortex in the vicinity of a particle by breaking the symmetric of the flow field, which has potential applications in mixing and/or regulating the medium confined in a submicrometer-sized space, where conventional mixing devices are inapplicable.


Colloids and Surfaces B: Biointerfaces | 2012

Importance of the porous structure of a soft particle on its electrophoretic behavior

Chih-Hao Chou; Jyh-Ping Hsu; Chao-Chung Kuo; Hiroyuki Ohshima; Shiojenn Tseng; R.M. Wu

The importance of the porous structure of a soft particle comprising a rigid core and a porous layer on its electrophoretic behavior is investigated. The porous layer is simulated by an aggregate of primary units, rendering it to have a radially varying fixed charge and hydrodynamic resistance. Key factors, including the thickness of double layer, the linear size of a primary unit, the aggregate dimension, and the thickness and the fixed charge density of the porous layer, are examined for their influence on the mobility of a particle. We show that if the fixed charge density is fixed, then the mobility increases with increasing double layer thickness, and the mobility increases with increasing fixed charge density. Increasing the linear size of a primary unit raises appreciably the mobility. In addition, the mobility increases with increasing thickness or aggregate dimension of the porous layer. The structure of the porous layer of a particle affects most significantly its mobility when the double layer is thick.


Langmuir | 2012

Importance of Electroosmotic Flow and Multiple Ionic Species on the Electrophoresis of a Rigid Sphere in a Charge-Regulated Zwitterionic Cylindrical Pore

Jyh-Ping Hsu; Chien-Pai Yee; Li-Hsien Yeh

The influence of electroosmotic flow (EOF) on the electrophoretic behavior of a particle is investigated by considering a rigid sphere in a charge-regulated, zwitterionic cylindrical pore filled with an aqueous solution containing multiple ionic species. This extends conventional analyses to a more general and realistic case. Taking a pore with pK(a) = 7 and pK(b) = 2 (point of zero charge is pH = 2.5) filled with an aqueous NaCl solution as an example, several interesting results are observed. For instance, if pH < 5.5, the particle mobility is influenced mainly by boundary effect, and is influenced by both EOF and boundary effects if pH ≥ 5.5. If pH is sufficiently high, the particle behavior is dominated by EOF, which might alter the direction of electrophoresis. The ratio of (pore radius/particle radius) influences not only the boundary effect, but also the strength of EOF. If the boundary effect is insignificant, the mobility varies roughly linearly with log(bulk salt concentration). These findings are of practical significance to both the interpretation of experimental data and the design of electrophoresis devices.


Journal of Physical Chemistry B | 2012

Importance of boundary on the electrophoresis of a soft cylindrical particle.

Jyh-Ping Hsu; Hong-Ming Lo; Li-Hsien Yeh; Shiojenn Tseng

We modeled the electrophoresis of a soft cylindrical particle comprising a rigid core and a polyelectrolyte layer along the axis of a long, cylindrical pore, and the applicability of the model proposed is verified by the experimental data available in the literature. Previous analysis is extended to the case where the effects of double-layer polarization (DLP) and electroosmotic flow (EOF) can be significant. We show that the interaction between the particles double layer and the pore, the competition between the effective charge density and the local electric field strength, and the presence of EOF yield interesting and significant results. For example, if EOF is absent, the particle mobility as the bulk salt concentration varies depends highly on the amount of fixed charge of its polyelectrolyte layer: if that amount is small, the mobility decreases monotonically with increasing bulk salt concentration, and if that amount is large, then the mobility shows a local maximum. At a high bulk salt concentration, the longer the particle the larger is its mobility, that trend is reversed if it is low. That local minimum vanishes when the boundary effect is important. If the pore is positively charged, a positively charged particle can be driven to the direction opposite to that of the applied electric field. These provide necessary information for the design of electrophoresis devices.

Collaboration


Dive into the Jyh-Ping Hsu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li-Hsien Yeh

National Yunlin University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Chien Hsu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Nan Wang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Shizhi Qian

Old Dominion University

View shared research outputs
Top Co-Authors

Avatar

Chih-Hua Huang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Kuan-Liang Liu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Ting-Wen Lo

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Yi-Hsuan Tai

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Chao-Chung Kuo

National Taiwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge