Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jyothilakshmi Vadassery is active.

Publication


Featured researches published by Jyothilakshmi Vadassery.


Molecular Plant-microbe Interactions | 2008

The Role of Auxins and Cytokinins in the Mutualistic Interaction Between Arabidopsis and Piriformospora indica

Jyothilakshmi Vadassery; Claudia Ritter; Yvonne Venus; Iris Camehl; Ajit Varma; Bationa Shahollari; Ondrej Novak; Miroslav Strnad; Jutta Ludwig-Müller

Arabidopsis growth and reproduction are stimulated by the endophytic fungus Piriformospora indica. The fungus produces low amounts of auxins, but the auxin levels and the expression of auxin-regulated genes are not altered in colonized roots. Also, mutants with reduced auxin levels (ilr1-1, nit1-3, tfl2, cyp79 b2b3) respond to P. indica. However, the fungus rescues the dwarf phenotype of the auxin overproducer sur1-1 by converting free auxin into conjugates, which also results in the downregulation of the auxin-induced IAA6 and the upregulation of the P. indica-induced LRR1 gene. The fungus produces relatively high levels of cytokinins, and the cytokinin levels are higher in colonized roots compared with the uncolonized controls. trans-Zeatin cytokinin biosynthesis and the CRE1/AHK2 receptor combination are crucial for P. indica-mediated growth stimulation, while mutants lacking cis-zeatin, impaired in other cytokinin receptor combinations, or containing reduced cytokinin levels respond to the fungus. Since root colonization is not affected in the cytokinin mutants, we propose that cytokinins are required for P. indica-induced growth promotion. Finally, a comparative analysis of the phytohormone mutants allows the conclusion that the response to P. indica is independent of the architecture and size of the roots.


Plant Journal | 2009

A cell wall extract from the endophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots

Jyothilakshmi Vadassery; Stefanie Ranf; Corinna Drzewiecki; Axel Mithöfer; Christian Mazars; Dierk Scheel; Justin Lee

Calcium (Ca2+), as a second messenger, is crucial for signal transduction processes during many biotic interactions. We demonstrate that cellular [Ca2+] elevations are early events in the interaction between the plant growth-promoting fungus Piriformospora indica and Arabidopsis thaliana. A cell wall extract (CWE) from the fungus promotes the growth of wild-type seedlings but not of seedlings from P. indica-insensitive mutants. The extract and the fungus also induce a similar set of genes in Arabidopsis roots, among them genes with Ca2+ signalling-related functions. The CWE induces a transient cytosolic Ca2+ ([Ca2+](cyt)) elevation in the roots of Arabidopsis and tobacco (Nicotiana tabacum) plants, as well as in BY-2 suspension cultures expressing the Ca2+ bioluminescent indicator aequorin. Nuclear Ca2+ transients were also observed in tobacco BY-2 cells. The Ca2+ response was more pronounced in roots than in shoots and involved Ca2+ uptake from the extracellular space as revealed by inhibitor studies. Inhibition of the Ca2+ response by staurosporine and the refractory nature of the Ca2+ elevation suggest that a receptor may be involved. The CWE does not stimulate H2O2 production and the activation of defence gene expression, although it led to phosphorylation of mitogen-activated protein kinases (MAPKs) in a Ca2+-dependent manner. The involvement of MAPK6 in the mutualistic interaction was shown for an mpk6 line, which did not respond to P. indica. Thus, Ca2+ is likely to be an early signalling component in the mutualistic interaction between P. indica and Arabidopsis or tobacco.


Plant Physiology | 2012

CML42-mediated calcium signaling co-ordinates responses to Spodoptera herbivory and abiotic stresses in Arabidopsis

Jyothilakshmi Vadassery; Michael Reichelt; Bettina Hause; Jonathan Gershenzon; Wilhelm Boland; Axel Mithöfer

In the interaction between Arabidopsis (Arabidopsis thaliana) and the generalist herbivorous insect Spodoptera littoralis, little is known about early events in defense signaling and their link to downstream phytohormone pathways. S. littoralis oral secretions induced both Ca2+ and phytohormone elevation in Arabidopsis. Plant gene expression induced by oral secretions revealed up-regulation of a gene encoding a calmodulin-like protein, CML42. Functional analysis of cml42 plants revealed more resistance to herbivory than in the wild type, because caterpillars gain less weight on the mutant, indicating that CML42 negatively regulates plant defense; cml42 also showed increased aliphatic glucosinolate content and hyperactivated transcript accumulation of the jasmonic acid (JA)-responsive genes VSP2 and Thi2.1 upon herbivory, which might contribute to increased resistance. CML42 up-regulation is negatively regulated by the jasmonate receptor Coronatine Insensitive1 (COI1), as loss of functional COI1 resulted in prolonged CML42 activation. CML42 thus acts as a negative regulator of plant defense by decreasing COI1-mediated JA sensitivity and the expression of JA-responsive genes and is independent of herbivory-induced JA biosynthesis. JA-induced Ca2+ elevation and root growth inhibition were more sensitive in cml42, also indicating higher JA perception. Our results indicate that CML42 acts as a crucial signaling component connecting Ca2+ and JA signaling. CML42 is localized to cytosol and nucleus. CML42 is also involved in abiotic stress responses, as kaempferol glycosides were down-regulated in cml42, and impaired in ultraviolet B resistance. Under drought stress, the level of abscisic acid accumulation was higher in cml42 plants. Thus, CML42 might serve as a Ca2+ sensor having multiple functions in insect herbivory defense and abiotic stress responses.


PLOS Pathogens | 2011

The OXI1 kinase pathway mediates Piriformospora indica-induced growth promotion in Arabidopsis

Iris Camehl; Corinna Drzewiecki; Jyothilakshmi Vadassery; Bationa Shahollari; Irena Sherameti; Celine Forzani; Teun Munnik; Heribert Hirt

Piriformospora indica is an endophytic fungus that colonizes roots of many plant species and promotes growth and resistance to certain plant pathogens. Despite its potential use in agriculture, little is known on the molecular basis of this beneficial plant-fungal interaction. In a genetic screen for plants, which do not show a P. indica- induced growth response, we isolated an Arabidopsis mutant in the OXI1 (Oxidative Signal Inducible1) gene. OXI1 has been characterized as a protein kinase which plays a role in pathogen response and is regulated by H2O2 and PDK1 (3-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE1). A genetic analysis showed that double mutants of the two closely related PDK1.1 and PDK1.2 genes are defective in the growth response to P. indica. While OXI1 and PDK1 gene expression is upregulated in P. indica-colonized roots, defense genes are downregulated, indicating that the fungus suppresses plant defense reactions. PDK1 is activated by phosphatidic acid (PA) and P. indica triggers PA synthesis in Arabidopsis plants. Under beneficial co-cultivation conditions, H2O2 formation is even reduced by the fungus. Importantly, phospholipase D (PLD)α1 or PLDδ mutants, which are impaired in PA synthesis do not show growth promotion in response to fungal infection. These data establish that the P. indica-stimulated growth response is mediated by a pathway consisting of the PLD-PDK1-OXI1 cascade.


Journal of Plant Physiology | 2009

Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis

Jyothilakshmi Vadassery; Swati Tripathi; Ram Prasad; Ajit Varma

Ascorbate is a major antioxidant and radical scavenger in plants. Monodehydroascorbate reductase (MDAR) and dehydroascorbate reductase (DHAR) are two enzymes of the ascorbate-glutathione cycle that maintain ascorbate in its reduced state. MDAR2 (At3g09940) and DHAR5 (At1g19570) expression was upregulated in the roots and shoots of Arabidopsis seedlings co-cultivated with the root-colonizing endophytic fungus Piriformospora indica, or that were exposed to a cell wall extract or a culture filtrate from the fungus. Growth and seed production were not promoted by Piriformospora indica in mdar2 (SALK_0776335C) and dhar5 (SALK_029966C) T-DNA insertion lines, while colonized wild-type plants were larger and produced more seeds compared to the uncolonized controls. After 3 weeks of drought stress, growth and seed production were reduced in Piriformospora indica-colonized plants compared to the uncolonized control, and the roots of the drought-stressed insertion lines were colonized more heavily by the fungus than were wild-type plants. Upregulation of the message for the antimicrobial PDF1.2 protein in drought-stressed insertion lines indicated that MDAR2 and DHAR5 are crucial for producing sufficient ascorbate to maintain the interaction between Piriformospora indica and Arabidopsis in a mutualistic state.


New Phytologist | 2015

Systemic cytosolic Ca2+ elevation is activated upon wounding and herbivory in Arabidopsis

Victoria Kiep; Jyothilakshmi Vadassery; Justus Lattke; Jan-Peter Maaß; Wilhelm Boland; Edgar Peiter; Axel Mithöfer

Calcium ion (Ca(2+) ) signalling triggered by insect herbivory is an intricate network with multiple components, involving positive and negative regulators. Real-time, noninvasive imaging of entire Arabidopsis thaliana rosettes was employed to monitor cytosolic free calcium ([Ca(2+) ]cyt ) elevations in local and systemic leaves in response to wounding and Spodoptera littoralis feeding. Luminescence emitted by the cytosol-localized Ca(2+) reporter aequorin was imaged using a high-resolution photon-counting camera system. Spodoptera littoralis feeding on Arabidopsis induced both local and systemic [Ca(2+) ]cyt elevations. Systemic [Ca(2+) ]cyt signals were found predominantly in adjacent leaves with direct vascular connections to the treated leaf and appeared with a delay of 1 to 2 min. Simulated herbivory by wounding always induced a local [Ca(2+) ]cyt response, but a systemic one only when the midrib was wounded. This systemic [Ca(2+) ]cyt response was suppressed by the presence of insect-derived oral secretions as well as in a mutant of the vacuolar cation channel, Two Pore Channel 1 (TPC1). Our results provide evidence that in Arabidopsis insect herbivory induces both local and systemic [Ca(2+) ]cyt signals that distribute within the vascular system. The systemic [Ca(2+) ]cyt signal could play an important signalling role in systemic plant defence.


PLOS ONE | 2015

Overexpression of an AP2/ERF Type Transcription Factor OsEREBP1 Confers Biotic and Abiotic Stress Tolerance in Rice.

V. Jisha; Lavanya Dampanaboina; Jyothilakshmi Vadassery; Axel Mithöfer; Saivishnupriya Kappara; Rajeshwari Ramanan

AP2/ERF–type transcription factors regulate important functions of plant growth and development as well as responses to environmental stimuli. A rice AP2/ERF transcription factor, OsEREBP1 is a downstream component of a signal transduction pathway in a specific interaction between rice (Oryza sativa) and its bacterial pathogen, Xoo (Xanthomonas oryzae pv. oryzae). Constitutive expression of OsEREBP1 in rice driven by maize ubiquitin promoter did not affect normal plant growth. Microarray analysis revealed that over expression of OsEREBP1 caused increased expression of lipid metabolism related genes such as lipase and chloroplastic lipoxygenase as well as several genes related to jasmonate and abscisic acid biosynthesis. PR genes, transcription regulators and Aldhs (alcohol dehydrogenases) implicated in abiotic stress and submergence tolerance were also upregulated in transgenic plants. Transgenic plants showed increase in endogenous levels of α-linolenate, several jasmonate derivatives and abscisic acid but not salicylic acid. Soluble modified GFP (SmGFP)-tagged OsEREBP1 was localized to plastid nucleoids. Comparative analysis of non-transgenic and OsEREBP1 overexpressing genotypes revealed that OsEREBP1 attenuates disease caused by Xoo and confers drought and submergence tolerance in transgenic rice. Our results suggest that constitutive expression of OsEREBP1 activates the jasmonate and abscisic acid signalling pathways thereby priming the rice plants for enhanced survival under abiotic or biotic stress conditions. OsEREBP1 is thus, a good candidate gene for engineering plants for multiple stress tolerance.


Molecular Plant | 2014

Mutation of the Arabidopsis Calmodulin-Like Protein CML37 Deregulates the Jasmonate Pathway and Enhances Susceptibility to Herbivory

Sandra S. Scholz; Jyothilakshmi Vadassery; Monika Heyer; Michael Reichelt; Kyle W. Bender; Wayne A. Snedden; Wilhelm Boland; Axel Mithöfer

Throughout their life, plants are challenged by various abiotic and biotic stress factors. Among those are attacks from herbivorous insects. The molecular mechanisms underlying the detection of herbivores and the subsequent signal transduction are not well understood. As a second messenger, fluxes in intracellular Ca(2+) levels play a key role in mediating stress response pathways. Ca(2+) signals are decoded by Ca(2+) sensor proteins such as calmodulin-like proteins (CMLs). Here, we demonstrate that recombinant CML37 behaves like a Ca(2+) sensor in vitro and, in Arabidopsis, AtCML37 is induced by mechanical wounding as well as by infestation with larvae of the generalist lepidopteran herbivore Spodoptera littoralis. Loss of function of CML37 led to a better feeding performance of larvae suggesting that CML37 is a positive defense regulator. No herbivory-induced changes in secondary metabolites such as glucosinolates or flavonoids were detected in cml37 plants, although a significant reduction in the accumulation of jasmonates was observed, due to reduced expression of JAR1 mRNA and cellular enzyme activity. Consequently, the expression of jasmonate-responsive genes was reduced as well. Summarizing, our results suggest that the Ca(2+) sensor protein, CML37, functions as a positive regulator in Ca(2+) signaling during herbivory, connecting Ca(2+) and jasmonate signaling.


BMC Plant Biology | 2014

An Arabidopsis mutant impaired in intracellular calcium elevation is sensitive to biotic and abiotic stress

Joy Michal Johnson; Michael Reichelt; Jyothilakshmi Vadassery; Jonathan Gershenzon

BackgroundCa2+, a versatile intracellular second messenger in various signaling pathways, initiates many responses involved in growth, defense and tolerance to biotic and abiotic stress. Endogenous and exogenous signals induce cytoplasmic Ca2+ ([Ca2+]cyt) elevation, which are responsible for the appropriate downstream responses.ResultsHere we report on an ethyl-methane sulfonate-mediated Arabidopsis mutant that fails to induce [Ca2+]cyt elevation in response to exudate preparations from the pathogenic mibrobes Alternaria brassicae, Rhizoctonia solani, Phytophthora parasitica var. nicotianae and Agrobacterium tumefaciens. The cytoplasmicCa2+elevationmutant1 (cycam1) is susceptible to infections by A. brassicae, its toxin preparation and sensitive to abiotic stress such as drought and salt. It accumulates high levels of reactive oxygen species and contains elevated salicylic acid, abscisic acid and bioactive jasmonic acid iso-leucine levels. Reactive oxygen species- and phytohormone-related genes are higher in A. brassicae-treated wild-type and mutant seedlings. Depending on the analysed response, the elevated levels of defense-related compounds are either caused by the cycam mutation and are promoted by the pathogen, or they are mainly due to the pathogen infection or application of pathogen-associated molecular patterns. Furthermore, cycam1 shows altered responses to abscisic acid treatments: the hormone inhibits germination and growth of the mutant.ConclusionsWe isolated an Arabidopsis mutant which fails to induce [Ca2+]cyt elevation in response to exudate preparations from various microbes. The higher susceptibility of the mutant to pathogen infections correlates with the higher accumulation of defense-related compounds, such as phytohormones, reactive oxygen-species, defense-related mRNA levels and secondary metabolites. Therefore, CYCAM1 couples [Ca2+]cyt elevation to biotic, abiotic and oxidative stress responses.


Plant Signaling & Behavior | 2012

Multiple calmodulin-like proteins in Arabidopsis are induced by insect-derived (Spodoptera littoralis) oral secretion

Jyothilakshmi Vadassery; Sandra S. Scholz; Axel Mithöfer

In plant cells, diverse environmental changes often induce transient elevation in the intracellular calcium concentrations, which are involved in signaling pathways leading to the respective cellular reactions. Therefore, these calcium elevations need to be deciphered into specific downstream responses. Calmodulin-like-proteins (CMLs) are calcium-sensing proteins present only in higher plants. They are involved in signaling processes induced by both abiotic as well as biotic stress factors. However, the role of CMLs in the interaction of plants with herbivorous insects is almost unknown. Here we show that in Arabidopsis thaliana a number of CMLs genes (CML9, 11,12,16,17 and 23) are upregulated due to treatments with oral secretion of larvae of the herbivorous insect Spodoptera littoralis. We identified that these genes belong to two groups that respond with different kinetics to the treatment with oral secretion. Our data indicate that signaling networks involving multiple CMLs very likely have important functions in plant defense against insect herbivores, in addition to their involvement in many other stress-induced processes in plants.

Collaboration


Dive into the Jyothilakshmi Vadassery's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge