Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jyoti C. Patel is active.

Publication


Featured researches published by Jyoti C. Patel.


The Journal of Neuroscience | 2010

Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson's disease mutation G2019S.

Xianting Li; Jyoti C. Patel; Jing Wang; Marat V. Avshalumov; Charles Nicholson; Joseph D. Buxbaum; Gregory A. Elder; Margaret E. Rice; Zhenyu Yue

PARK8/LRRK2 (leucine-rich repeat kinase 2) was recently identified as a causative gene for autosomal dominant Parkinsons disease (PD), with LRRK2 mutation G2019S linked to the most frequent familial form of PD. Emerging in vitro evidence indicates that aberrant enzymatic activity of LRRK2 protein carrying this mutation can cause neurotoxicity. However, the physiological and pathophysiological functions of LRRK2 in vivo remain elusive. Here we characterize two bacterial artificial chromosome (BAC) transgenic mouse strains overexpressing LRRK2 wild-type (Wt) or mutant G2019S. Transgenic LRRK2-Wt mice had elevated striatal dopamine (DA) release with unaltered DA uptake or tissue content. Consistent with this result, LRRK2-Wt mice were hyperactive and showed enhanced performance in motor function tests. These results suggest a role for LRRK2 in striatal DA transmission and the consequent motor function. In contrast, LRRK2-G2019S mice showed an age-dependent decrease in striatal DA content, as well as decreased striatal DA release and uptake. Despite increased brain kinase activity, LRRK2-G2019S overexpression was not associated with loss of DAergic neurons in substantia nigra or degeneration of nigrostriatal terminals at 12 months. Our results thus reveal a pivotal role for LRRK2 in regulating striatal DA transmission and consequent control of motor function. The PD-associated mutation G2019S may exert pathogenic effects by impairing these functions of LRRK2. Our LRRK2 BAC transgenic mice, therefore, could provide a useful model for understanding early PD pathological events.


The Journal of Neuroscience | 2010

Glutamatergic Signaling by Mesolimbic Dopamine Neurons in the Nucleus Accumbens

Fatuel Tecuapetla; Jyoti C. Patel; Harry Xenias; Daniel F. English; Ibrahim Tadros; Fulva Shah; Joshua Berlin; Karl Deisseroth; Margaret E. Rice; James M. Tepper; Tibor Koós

Recent evidence suggests the intriguing possibility that midbrain dopaminergic (DAergic) neurons may use fast glutamatergic transmission to communicate with their postsynaptic targets. Because of technical limitations, direct demonstration of the existence of this signaling mechanism has been limited to experiments using cell culture preparations that often alter neuronal function including neurotransmitter phenotype. Consequently, it remains uncertain whether glutamatergic signaling between DAergic neurons and their postsynaptic targets exists under physiological conditions. Here, using an optogenetic approach, we provide the first conclusive demonstration that mesolimbic DAergic neurons in mice release glutamate and elicit excitatory postsynaptic responses in projection neurons of the nucleus accumbens. In addition, we describe the properties of the postsynaptic glutamatergic responses of these neurons during experimentally evoked burst firing of DAergic axons that reproduce the reward-related phasic population activity of the mesolimbic projection. These observations indicate that, in addition to DAergic mechanisms, mesolimbic reward signaling may involve glutamatergic transmission.


Neuroscience | 2011

Dopamine release in the basal ganglia

Margaret E. Rice; Jyoti C. Patel; Stephanie J. Cragg

Dopamine (DA) is a key transmitter in the basal ganglia, yet DA transmission does not conform to several aspects of the classic synaptic doctrine. Axonal DA release occurs through vesicular exocytosis and is action potential- and Ca²⁺-dependent. However, in addition to axonal release, DA neurons in midbrain exhibit somatodendritic release by an incompletely understood, but apparently exocytotic, mechanism. Even in striatum, axonal release sites are controversial, with evidence for DA varicosities that lack postsynaptic specialization, and largely extrasynaptic DA receptors and transporters. Moreover, DA release is often assumed to reflect a global response to a population of activities in midbrain DA neurons, whether tonic or phasic, with precise timing and specificity of action governed by other basal ganglia circuits. This view has been reinforced by anatomical evidence showing dense axonal DA arbors throughout striatum, and a lattice network formed by DA axons and glutamatergic input from cortex and thalamus. Nonetheless, localized DA transients are seen in vivo using voltammetric methods with high spatial and temporal resolution. Mechanistic studies using similar methods in vitro have revealed local regulation of DA release by other transmitters and modulators, as well as by proteins known to be disrupted in Parkinsons disease and other movement disorders. Notably, the actions of most other striatal transmitters on DA release also do not conform to the synaptic doctrine, with the absence of direct synaptic contacts for glutamate, GABA, and acetylcholine (ACh) on striatal DA axons. Overall, the findings reviewed here indicate that DA signaling in the basal ganglia is sculpted by cooperation between the timing and pattern of DA input and those of local regulatory factors.


Journal of Immunology | 2008

Prostaglandin E2 Exerts Catabolic Effects in Osteoarthritis Cartilage: Evidence for Signaling via the EP4 Receptor

Mukundan Attur; H. Al-Mussawir; Jyoti C. Patel; Alison Kitay; M. Dave; Glyn D. Palmer; Michael H. Pillinger; Steven B. Abramson

Elevated levels of PGE2 have been reported in synovial fluid and cartilage from patients with osteoarthritis (OA). However, the functions of PGE2 in cartilage metabolism have not previously been studied in detail. To do so, we cultured cartilage explants, obtained from patients undergoing knee replacement surgery for advanced OA, with PGE2 (0.1–10 μM). PGE2 inhibited proteoglycan synthesis in a dose-dependent manner (maximum 25% inhibition (p < 0.01)). PGE2 also induced collagen degradation, in a manner inhibitable by the matrix metalloproteinase (MMP) inhibitor ilomastat. PGE2 inhibited spontaneous MMP-1, but augmented MMP-13 secretion by OA cartilage explant cultures. PCR analysis of OA chondrocytes treated with PGE2 with or without IL-1 revealed that IL-1-induced MMP-13 expression was augmented by PGE2 and significantly inhibited by the cycolooygenase 2 selective inhibitor celecoxib. Conversely, MMP-1 expression was inhibited by PGE2, while celecoxib enhanced both spontaneous and IL-1-induced expression. IL-1 induction of aggrecanase 5 (ADAMTS-5), but not ADAMTS-4, was also enhanced by PGE2 (10 μM) and reversed by celecoxib (2 μM). Quantitative PCR screening of nondiseased and end-stage human knee OA articular cartilage specimens revealed that the PGE2 receptor EP4 was up-regulated in OA cartilage. Moreover, blocking the EP4 receptor (EP4 antagonist, AH23848) mimicked celecoxib by inhibiting MMP-13, ADAMST-5 expression, and proteoglycan degradation. These results suggest that PGE2 inhibits proteoglycan synthesis and stimulates matrix degradation in OA chondrocytes via the EP4 receptor. Targeting EP4, rather than cyclooxygenase 2, could represent a future strategy for OA disease modification.


Arthritis & Rheumatism | 2008

The antioxidant resveratrol protects against chondrocyte apoptosis via effects on mitochondrial polarization and ATP production

M. Dave; Mukundan Attur; Glyn D. Palmer; H. Al-Mussawir; Lauren Kennish; Jyoti C. Patel; Steven B. Abramson

OBJECTIVE To determine the effects of the antioxidant resveratrol on the functions of human chondrocytes in osteoarthritis (OA). METHODS Chondrocytes and cartilage explants were isolated from OA patients undergoing knee replacement surgery. Effects of resveratrol in the presence or absence of interleukin-1beta (IL-1beta) stimulation were assessed by measurement of prostaglandin E(2) (PGE(2)) and leukotriene B(4) (LTB(4)) synthesis, cyclooxygenase (COX) activity, matrix metalloproteinase (MMP) expression, and proteoglycan production. To explore the mechanisms of action of resveratrol, its effects on mitochondrial function and apoptosis were examined by assessing mitochondrial membrane potential, ATP levels, cytochrome c release, and annexin V staining. RESULTS Resveratrol inhibited both spontaneous and IL-1beta-induced PGE(2) production by >20% (P < 0.05) and by 80% (P < 0.001), respectively; similarly, LTB(4) production was reduced by >50% (P < 0.05). The production of PGE(2) was inhibited via a 70-90% suppression of COX-2 expression and enzyme activity (P < 0.05). Resveratrol also promoted anabolic effects in OA explant cultures, by elevating proteoglycan synthesis and decreasing production of MMPs 1, 3, and 13. Pretreatment of OA chondrocytes with resveratrol blocked mitochondrial membrane depolarization, loss of mitochondrial biomass, and IL-1beta-induced ATP depletion. Similarly, IL-1beta-mediated induction of the apoptotic markers cytochrome c and annexin V was also inhibited by resveratrol. Exogenous addition of PGE(2) abolished the protective effects of resveratrol on mitochondrial membrane integrity, ATP levels, expression of apoptotic markers, and DNA fragmentation. CONCLUSION Resveratrol protects against IL-1beta-induced catabolic effects and prevents chondrocyte apoptosis via its inhibition of mitochondrial membrane depolarization and ATP depletion. These beneficial effects of resveratrol are due, in part, to its capacity to inhibit COX-2-derived PGE(2) synthesis. Resveratrol may therefore protect against oxidant injury and apoptosis, which are main features of progressive OA.


The Journal of Neuroscience | 2009

Mitochondria Are the Source of Hydrogen Peroxide for Dynamic Brain-Cell Signaling

Li Bao; Marat V. Avshalumov; Jyoti C. Patel; Christian R. Lee; Evan W. Miller; Christopher J. Chang; Margaret E. Rice

Hydrogen peroxide (H2O2) is emerging as a ubiquitous small-molecule messenger in biology, particularly in the brain, but underlying mechanisms of peroxide signaling remain an open frontier for study. For example, dynamic dopamine transmission in dorsolateral striatum is regulated on a subsecond timescale by glutamate via H2O2 signaling, which activates ATP-sensitive potassium (KATP) channels to inhibit dopamine release. However, the origin of this modulatory H2O2 has been elusive. Here we addressed three possible sources of H2O2 produced for rapid neuronal signaling in striatum: mitochondrial respiration, monoamine oxidase (MAO), and NADPH oxidase (Nox). Evoked dopamine release in guinea-pig striatal slices was monitored with carbon-fiber microelectrodes and fast-scan cyclic voltammetry. Using direct fluorescence imaging of H2O2 and tissue analysis of ATP, we found that coapplication of rotenone (50 nm), a mitochondrial complex I inhibitor, and succinate (5 mm), a complex II substrate, limited H2O2 production, but maintained tissue ATP content. Strikingly, coapplication of rotenone and succinate also prevented glutamate-dependent regulation of dopamine release, implicating mitochondrial H2O2 in release modulation. In contrast, inhibitors of MAO or Nox had no effect on dopamine release, suggesting a limited role for these metabolic enzymes in rapid H2O2 production in the striatum. These data provide the first demonstration that respiring mitochondria are the primary source of H2O2 generation for dynamic neuronal signaling.


The Journal of Neuroscience | 2009

Mobilization of Calcium from Intracellular Stores Facilitates Somatodendritic Dopamine Release

Jyoti C. Patel; Paul Witkovsky; Marat V. Avshalumov; Margaret E. Rice

Somatodendritic dopamine (DA) release in the substantia nigra pars compacta (SNc) shows a limited dependence on extracellular calcium concentration ([Ca2+]o), suggesting the involvement of intracellular Ca2+ stores. Here, using immunocytochemistry we demonstrate the presence of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2 (SERCA2) that sequesters cytosolic Ca2+ into the endoplasmic reticulum (ER), as well as inositol 1,4,5-triphosphate receptors (IP3Rs) and ryanodine receptors (RyRs) in DAergic neurons. Notably, RyRs were clustered at the plasma membrane, poised for activation by Ca2+ entry. Using fast-scan cyclic voltammetry to monitor evoked extracellular DA concentration ([DA]o) in midbrain slices, we found that SERCA inhibition by cyclopiazonic acid (CPA) decreased evoked [DA]o in the SNc, indicating a functional role for ER Ca2+ stores in somatodendritic DA release. Implicating IP3R-dependent stores, an IP3R antagonist, 2-APB, also decreased evoked [DA]o. Moreover, DHPG, an agonist of group I metabotropic glutamate receptors (mGluR1s, which couple to IP3 production), increased somatodendritic DA release, whereas CPCCOEt, an mGluR1 antagonist, suppressed it. Release suppression by mGluR1 blockade was prevented by 2-APB or CPA, indicating facilitation of DA release by endogenous glutamate acting via mGluR1s and IP3R-gated Ca2+ stores. Similarly, activation of RyRs by caffeine increased [Ca2+]i and elevated evoked [DA]o. The increase in DA release was prevented by a RyR blocker, dantrolene, and by CPA. Importantly, the efficacy of dantrolene was enhanced in low [Ca2+]o, suggesting a mechanism for maintenance of somatodendritic DA release with limited Ca2+ entry. Thus, both mGluR1-linked IP3R- and RyR-dependent ER Ca2+ stores facilitate somatodendritic DA release in the SNc.


Nature Communications | 2015

Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward

Melissa A. Stouffer; Catherine Woods; Jyoti C. Patel; Christian R. Lee; Paul Witkovsky; Li Hong Bao; Robert P. Machold; Kymry T. Jones; Soledad Cabeza de Vaca; Maarten E. A. Reith; Kenneth D. Carr; Margaret E. Rice

Insulin activates insulin receptors (InsRs) in the hypothalamus to signal satiety after a meal. However, the rising incidence of obesity, which results in chronically elevated insulin levels, implies that insulin may also act in brain centres that regulate motivation and reward. We report here that insulin can amplify action potential-dependent dopamine (DA) release in the nucleus accumbens (NAc) and caudate–putamen through an indirect mechanism that involves striatal cholinergic interneurons that express InsRs. Furthermore, two different chronic diet manipulations in rats, food restriction (FR) and an obesogenic (OB) diet, oppositely alter the sensitivity of striatal DA release to insulin, with enhanced responsiveness in FR, but loss of responsiveness in OB. Behavioural studies show that intact insulin levels in the NAc shell are necessary for acquisition of preference for the flavour of a paired glucose solution. Together, these data imply that striatal insulin signalling enhances DA release to influence food choices.


Nature Communications | 2012

Opposing regulation of dopaminergic activity and exploratory motor behavior by forebrain and brainstem cholinergic circuits

Jyoti C. Patel; Elsa Rossignol; Margaret E. Rice; Robert P. Machold

Dopamine transmission is critical for exploratory motor behaviour. A key regulator is acetylcholine; forebrain acetylcholine regulates striatal dopamine release, whereas brainstem cholinergic inputs regulate the transition of dopamine neurons from tonic to burst firing modes. How these sources of cholinergic activity combine to control dopamine efflux and exploratory motor behaviour is unclear. Here we show that mice lacking total forebrain acetylcholine exhibit enhanced frequency-dependent striatal dopamine release and are hyperactive in a novel environment, whereas mice lacking rostral brainstem acetylcholine are hypoactive. Exploratory motor behaviour is normalized by the removal of both cholinergic sources. Involvement of dopamine in the exploratory motor phenotypes observed in these mutants is indicated by their altered sensitivity to the dopamine D2 receptor antagonist raclopride. These results support a model in which forebrain and brainstem cholinergic systems act in tandem to regulate striatal dopamine signalling for proper control of motor activity.


Journal of Neurophysiology | 2008

AMPA Receptor-Dependent H2O2 Generation in Striatal Medium Spiny Neurons But Not Dopamine Axons: One Source of a Retrograde Signal That Can Inhibit Dopamine Release

Marat V. Avshalumov; Jyoti C. Patel; Margaret E. Rice

Dopamine-glutamate interactions in the striatum are critical for normal basal ganglia-mediated control of movement. Although regulation of glutamatergic transmission by dopamine is increasingly well understood, regulation of dopaminergic transmission by glutamate remains uncertain given the apparent absence of ionotropic glutamate receptors on dopaminergic axons in dorsal striatum. Indirect evidence suggests glutamatergic regulation of striatal dopamine release is mediated by a diffusible messenger, hydrogen peroxide (H2O2), generated downstream from glutamatergic AMPA receptors (AMPARs). The mechanism of H2O2-dependent inhibition of dopamine release involves activation of ATP-sensitive K+ (KATP) channels. However, the source of modulatory H2O2 is unknown. Here, we used whole cell recording, fluorescence imaging of H2O2, and voltammetric detection of evoked dopamine release in guinea pig striatal slices to examine contributions from medium spiny neurons (MSNs), the principal neurons of striatum, and dopamine axons to AMPAR-dependent H2O2 generation. Imaging studies of H2O2 generation in MSNs provide the first demonstration of AMPAR-dependent H2O2 generation in neurons in the complex brain-cell microenvironment of brain slices. Stimulation-induced increases in H2O2 in MSNs were prevented by GYKI-52466, an AMPAR antagonist, or catalase, an H2O2 metabolizing enzyme, but amplified by mercaptosuccinate (MCS), a glutathione peroxidase inhibitor. By contrast, dopamine release evoked by selective stimulation of dopamine axons was unaffected by GYKI-52466 or MCS, arguing against dopamine axons as a significant source of modulatory H2O2. Together, these findings suggest that glutamatergic regulation of dopamine release via AMPARs is mediated through retrograde signaling by diffusible H2O2 generated in striatal cells, including medium spiny neurons, rather than in dopamine axons.

Collaboration


Dive into the Jyoti C. Patel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge