Jyotisankar Ray
University of Calcutta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jyotisankar Ray.
Journal of Earth System Science | 2012
Sohini Ganguly; Jyotisankar Ray; Christian Koeberl; Theodoros Ntaflos; Mousumi Banerjee
Several basaltic lava flows have been identified in the study area in and around Linga, in the Eastern Deccan Volcanic Province (EDVP) on the basis of distinctly developed structural zones defined by primary volcanic structures such as columnar joints and vesicles. These basaltic lava flows are spatially distributed in four different sectors, viz., (i) Bargona–Gadarwara (BG) sector (ii) Shikarpur–Linga (SL) sector (iii) Arjunvari–Survir Hill (AS) sector and (iv) Kukrachiman–Morand Hill (KM) sector. A three-tier classification scheme has been adopted for the characterization and classification of individual lava flows. Each lava flow consists of a Lower Colonnade Zone (LCZ) overlain by the Entablature Zone (EZ) and Upper Colonnade Zone (UCZ). The LCZ and UCZ grade into a distinct/indistinct Lower Vesicular Zone (LVZ) and Upper Vesicular Zone (UVZ), respectively. The LCZ and UCZ of the flows are characterized by columnar joints while the EZ is marked by multi-directional hackly jointing. The geometry of different joint patterns corresponds to different styles of cooling during solidification of lava flows. Detailed petrographic studies of the investigated lava flows reveal inequigranular phenocrystal basalts characterized by development of phenocrystal phases including plagioclase, clinopyroxene and olivine, whereas groundmass composition is marked by tiny plagioclase, clinopyroxene, opaque mineral and glass. Electron microprobe analyses indicate that the olivine has a wide range ∼Fo22 to Fo66 revealing a wide spectrum of compositional variation. Pyroxene compositions are distinctly designated as Quad pyroxenes. Phenocrystal pyroxenes are mostly diopsidic, while the groundmass pyroxenes mainly correspond to augite with a minor pigeonite component. Pyroxene phenocrysts are characterized by a prominent Ti-enrichment. Phenocrystal plagioclase grains are calcic (An52.7–An72.9), whereas groundmass plagioclase are relatively sodic (An39.2–An61.6). Groundmass opaque minerals are characteristically found to be Ti–magnetite/ilmenite/pyrophanite. Pyroxene thermometry reveals a temperature span of 850°C to 1280°C for the studied lavas while olivine–clinopyroxene thermometry yields a temperature range from 1040°–1160°C. The variation of temperature for the lava flows is ascribed to their normal cooling history after eruption.
Journal of The Geological Society of India | 2012
Niladri Bhattacharjee; Jyotisankar Ray; Sohini Ganguly; Abhishek Saha
The Chhotanagpur Gneissic Complex (CGC), bearing imprints of widespread high grade metamorphic and magmatic history since Palaeoproterozoic, represents an integral crustal segment of Eastern Indian Shield. The gabbroanorthosite intrusives constitute a part of mafic-ultramafic magmatism in the CGC. The study area around Dumka (24°16′ to 24°20′N: 87°13′ to 87°22′E) predominantly comprises of granite gneiss and charnockitic country rocks within which gabbro-anorthosite intrusions occur as lenses. Field relations and structural studies reveal that the country rocks of Dumka have suffered three phases of deformation represented by F1, F2 and F3 folds. The gabbro-anorthosite intrusives maintain a sharp contact with the host rocks, deformed and metamorphosed. Relict igneous layering or primary igneous foliation (Sig) is recorded where metamorphic overprint is minimal. Mineral phases of gabbro-anorthosite rocks suggest that clinopyroxene compositions from gabrro correspond to diopside and clinoferrosilite, while those from anorthosite are clinoferrosilite. Amphiboles from the gabbro-anorthosite rocks are calcic, and range from ferroan pargasite in gabbro to ferroan pargasitic hornblende in anorthosite. Plagioclase from gabbro and anorthosite belong to bytownite and andesine respectively. Chemical composition of garnet in gabbro is almandine. Thermobarometric estimates for Dumka gabbroanorthosites correspond to 511°C to 915°C and 5.0–7.5 kb pressure, comparable to that estimated for Bengal Anorthosite (593–795°C, 4.1–7.3 kb). Fractionation trend of plagioclase substantiates a single parental magma in the evolution of Dumka gabbro-anorthosite intrusives.
Archive | 2011
Piyali Sengupta; Jyotisankar Ray
The present area of investigation falls in the Eastern Deccan segment where available field and geochemical data are rather limited. In the present study, five distinctive structural zones namely Lower Vesicular zone, Lower Colonnade Zone, Entablature Zone, Upper Colonnade Zone and Upper Vesicular Zone have been identified in different lava flows which are helpful for the purpose of stratigraphic correlation. All the lavas under investigation can be classified into three distinct geochemical groups (viz. Group I, Group 2 and Group 3) on the basis of their Mg′ number and TiO2 wt%. The Group 1 lavas are marked by low Mg′ No (0.39–0.45) and high TiO2 (2.9–3.6 wt%) while Group 2 lavas are characterized by moderate Mg′ No (0.45–0.50) and moderate TiO2 (2.4–2.9 wt%). On the other hand, high Mg′ No (0.49–0.54) and low TiO2 (1.91–2.31 wt%) characterize the Group 3 basalts. Interestingly, the basaltic flows corresponding to three distinct groups are intermixed with each other; in other words, lava flows belonging to several groups are juxtaposed with one another with increasing height.
Journal of The Geological Society of India | 2017
Thungyani N. Ovung; Jyotisankar Ray; Biswajit Ghosh; Debabrata Mandal; Pallab Dasgupta; Madhuparna Paul
Serpentinization is pervasive in the ultramafic rocks of Manipur ophiolite belt (MOB), Northeastern India. Electron microprobe data of a serpentinite from the Ukhrul-Nungbi sector of MOB shows Ni-rich serpentine mineral (NiO = 33.4-33.9 wt %, SiO2= 37.55-38.96 wt %, MgO= 14.83-16.89 wt %). The composition and X-ray diffraction pattern characterize this Ni-rich serpentine mineral as népouite which is suggested to be a hydrothermal alteration product of NiO-rich olivine in a fore-arc peridotite. The genesis of this NiO-rich olivine is attributed to the melt-rock interaction in a supra-subduction zone setting.
Journal of Earth System Science | 2015
Sampa Hazra; Jyotisankar Ray; C. Manikyamba; Abhishek Saha; S S Sawant
The mafic rocks of east Khasi Hills of the Meghalaya Plateau, northeastern India, occur as an intrusive body which cut across the weakly metamorphosed Shillong Group of rocks. Other than Shillong Group of rocks, high grade Archaean gneissic rocks and younger porphyritic granites are also observed in the study area. The studied mafic rocks of east Khasi Hills cover an area of about 4 km 2 and represent structurally controlled intrusion and varying grades of deformation. Structurally, these mafic rocks can be divided into massive type of mafic rocks, which are more or less deformation free and foliated type of mafic rocks that experienced deformation. Petrographically, this massive type can be classified as leuco-hornblende-gabbro whereas foliated type can be designated as amphibolite. On the basis of major oxide geochemistry, the investigated mafic rocks can be discriminated into high titanium (HT) (TiO 2>2 wt%) and low titanium (LT) types (TiO 2<2 wt%). Use of several geochemical variation diagrams, consideration of chondrite-normalized and mantle-normalized REE and PGE plots suggest role of magmatic differentiation (with almost no role of plagioclase fractionation) in a subduction controlled tectonic environment. The PGE trends of the studied rocks suggest relative enrichment of palladium group of PGE (PPGE) compared to iridium group PGE (IPGE). Critical consideration of Sm vs. La, Cu vs. La, Pd vs. La and Cu/Pd vs. La/Sm plots strongly favours generation of the parent magma at a columnar melting regime with batch melting of cylindrical column of the parent mantle to the tune of ∼25%. The characteristic PGE behaviours of the presently investigated mafic rocks of east Khasi Hills can be typically corroborated as ‘orogenic’ (discordant) type. These rocks have an enriched mantle affinity with a co-magmatic lineage and they have been generated by slab-dehydration, wedge-melting and assimilation fractional crystallization process at a continental margin arc setting.
Journal of Earth System Science | 2016
Santanu Acharjee; Jyotisankar Ray; Payel Dey; Debapriya Bhattacharyya; Mousumi Banerjee; Basab Chattopadhyay; Shyamal Sengupta; A. K. Bhatt; D Chowdhury; A. K. Dwivedi; Sanjoy Mahato; Arka Ranjan Jana; P. B. Maithani; P. V. Ramesh Babu
The area of investigation at and around Mashak Pahar, Bankura district, West Bengal, India comprises a number of rock types namely: granite gneiss, migmatized quartz tourmaline gneiss, quartz pebble conglomerate, ferruginous quartzite, quartz tourmaline veins (as veins) and graphite schists. Interestingly, the study area lies in the region extending South Purulia Shear Zone (∼Tamar–Porapahar Shear Zone) which marks the boundary between two contrasting tectonic blocks of eastern India, namely, the Chhotanagpur Gneissic Terrane (CGC) to the north and Singhbhum Group of rocks to the south. The rocks of the study area are poly-phasedly deformed by three phases of folding, namely, F1, F2 and F3. All the tourmalines are classified to be of ‘Alkali Group’. Chemistry of tourmalines from migmatized quartz tourmaline gneiss and those from quartz tourmaline veins are in conformity with their relation to (earthquake induced) shear system evolution in this terrain. In general, the compositional evolution of tourmaline during prograde metamorphism (∼400°–730°C) has been supported by both petrographic and chemical evidences. Assessment of mineral–chemical data of constituent tourmaline grains clearly suggests compositional variations across zonal boundaries within tourmaline that was controlled by changing metamorphic milieu in this terrane. Field and petrographic evidences clearly indicate activation of earlier and later shears in this region accompanied by infiltration of boron and formation of zoned tourmaline crystals.
Ore Geology Reviews | 2014
Biswajit Ghosh; Jyotisankar Ray; Tomoaki Morishita
Precambrian Research | 2015
C. Manikyamba; Jyotisankar Ray; Sohini Ganguly; M. Rajanikanta Singh; M. Santosh; Abhishek Saha; M. Satyanarayanan
Archive | 2011
Jyotisankar Ray; Gautam Sen; Biswajit Ghosh
Precambrian Research | 2013
Jyotisankar Ray; Abhishek Saha; Christian Koeberl; Martin Thöni; Sohini Ganguly; Sampa Hazra