Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jyotsana Singhal is active.

Publication


Featured researches published by Jyotsana Singhal.


Toxicology and Applied Pharmacology | 2015

Antioxidant role of glutathione S-transferases: 4-Hydroxynonenal, a key molecule in stress-mediated signaling.

Sharad S. Singhal; Sharda P. Singh; Preeti Singhal; David Horne; Jyotsana Singhal; Sanjay Awasthi

4-Hydroxy-2-trans-nonenal (4HNE), one of the major end products of lipid peroxidation (LPO), has been shown to induce apoptosis in a variety of cell lines. It appears to modulate signaling processes in more than one way because it has been suggested to have a role in signaling for differentiation and proliferation. It has been known that glutathione S-transferases (GSTs) can reduce lipid hydroperoxides through their Se-independent glutathione-peroxidase activity and that these enzymes can also detoxify LPO end-products such as 4HNE. Available evidence from earlier studies together with results of recent studies in our laboratories strongly suggests that LPO products, particularly hydroperoxides and 4HNE, are involved in the mechanisms of stress-mediated signaling and that it can be modulated by the alpha-class GSTs through the regulation of the intracellular concentrations of 4HNE. We demonstrate that 4HNE induced apoptosis in various cell lines is accompanied with c-Jun-N-terminal kinase (JNK) and caspase-3 activation. Cells exposed to mild, transient heat or oxidative stress acquire the capacity to exclude intracellular 4HNE at a faster rate by inducing GSTA4-4 which conjugates 4HNE to glutathione (GSH), and RLIP76 which mediates the ATP-dependent transport of the GSH-conjugate of 4HNE (GS-HNE). The balance between formation and exclusion promotes different cellular processes - higher concentrations of 4HNE promote apoptosis; whereas, lower concentrations promote proliferation. In this article, we provide a brief summary of the cellular effects of 4HNE, followed by a review of its GST-catalyzed detoxification, with an emphasis on the structural attributes that play an important role in the interactions with alpha-class GSTA4-4. Taken together, 4HNE is a key signaling molecule and that GSTs being determinants of its intracellular concentrations, can regulate stress-mediated signaling, are reviewed in this article.


PLOS ONE | 2012

RLIP76 Regulates PI3K/Akt Signaling and Chemo-Radiotherapy Resistance in Pancreatic Cancer

Kathryn Leake; Jyotsana Singhal; Lokesh Nagaprashantha; Sanjay Awasthi; Sharad S. Singhal

Purpose Pancreatic cancer is an aggressive malignancy with characteristic metastatic course of disease and resistance to conventional chemo-radiotherapy. RLIP76 is a multi-functional cell membrane protein that functions as a major mercapturic acid pathway transporter as well as key regulator of receptor-ligand complexes. In this regard, we investigated the significance of targeting RLIP76 on PI3K/Akt pathway and mechanisms regulating response to chemo-radiotherapy. Research Design and Methods Cell survival was assessed by MTT and colony forming assays. Cellular levels of proteins and phosphorylation was determined by Western blot analyses. The impact on apoptosis was determined by TUNEL assay. The anti-cancer effects of RLIP76 targeted interventions in vivo were determined using mice xenograft model of the pancreatic cancer. The regulation of doxorubicin transport and radiation sensitivity were determined by transport studies and colony forming assays, respectively. Results Our current studies reveal an encompassing model for the role of RLIP76 in regulating the levels of fundamental proteins like PI3K, Akt, E-cadherin, CDK4, Bcl2 and PCNA which are of specific importance in the signal transduction from critical upstream signaling cascades that determine the proliferation, apoptosis and differentiation of pancreatic cancer cells. RLIP76 depletion also caused marked and sustained regression of established human BxPC-3 pancreatic cancer tumors in nude mouse xenograft model. RLIP76 turned out to be a major regulator of drug transport along with contributing to the radiation resistance in pancreatic cancer. Conclusions/Significance RLIP76 represents a mechanistically significant target for developing effective interventions in aggressive and refractory pancreatic cancers.


Journal of Biological Chemistry | 2015

SR4 Uncouples Mitochondrial Oxidative Phosphorylation, Modulates AMP-dependent Kinase (AMPK)-Mammalian Target of Rapamycin (mTOR) Signaling, and Inhibits Proliferation of HepG2 Hepatocarcinoma Cells.

James L. Figarola; Jyotsana Singhal; Joshua D. Tompkins; George W. Rogers; Charles D. Warden; David Horne; Arthur D. Riggs; Sanjay Awasthi; Sharad S. Singhal

Mitochondrial oxidative phosphorylation produces most of the energy in aerobic cells by coupling respiration to the production of ATP. Mitochondrial uncouplers, which reduce the proton gradient across the mitochondrial inner membrane, create a futile cycle of nutrient oxidation without generating ATP. Regulation of mitochondrial dysfunction and associated cellular bioenergetics has been recently identified as a promising target for anticancer therapy. Here, we show that SR4 is a novel mitochondrial uncoupler that causes dose-dependent increase in mitochondrial respiration and dissipation of mitochondrial membrane potential in HepG2 hepatocarcinoma cells. These effects were reversed by the recoupling agent 6-ketocholestanol but not cyclosporin A and were nonexistent in mitochondrial DNA-depleted HepG2 cells. In isolated mouse liver mitochondria, SR4 similarly increased oxygen consumption independent of adenine nucleotide translocase and uncoupling proteins, decreased mitochondrial membrane potential, and promoted swelling of valinomycin-treated mitochondria in potassium acetate medium. Mitochondrial uncoupling in HepG2 cells by SR4 results in the reduction of cellular ATP production, increased ROS production, activation of the energy-sensing enzyme AMPK, and inhibition of acetyl-CoA carboxylase and mammalian target of rapamycin signaling pathways, leading to cell cycle arrest and apoptosis. Global analysis of SR4-associated differential gene expression confirms these observations, including significant induction of apoptotic genes and down-regulation of cell cycle, mitochondrial, and oxidative phosphorylation pathway transcripts at 24 h post-treatment. Collectively, our studies demonstrate that the previously reported indirect activation of AMPK and in vitro anticancer properties of SR4 as well as its beneficial effects in both animal xenograft and obese mice models could be a direct consequence of its mitochondrial uncoupling activity.


Biochemical Pharmacology | 2012

1,3-Bis(3,5-dichlorophenyl) urea compound 'COH-SR4' inhibits proliferation and activates apoptosis in melanoma.

Sharad S. Singhal; James L. Figarola; Jyotsana Singhal; Kathryn Leake; Lokesh Nagaprashantha; Christopher Lincoln; B. Gabriel Gugiu; David Horne; Richard Jove; Sanjay Awasthi; Samuel Rahbar

The current clinical interventions in malignant melanomas are met with poor response to therapy due to dynamic regulation of multiple melanoma signaling pathways consequent to administration of single target agents. In this context of limited response to single target agents, novel candidate molecules capable of effectively inducing tumor inhibition along with targeting multiple critical nodes of melanoma signaling assume translational significance. In this regard, we investigated the anti-cancer effects of a novel dichlorophenyl urea compound called COH-SR4 in melanoma. The SR4 treatment decreased the survival and inhibited the clonogenic potential of melanomas along with inducing apoptosis in vitro cultures. SR4 treatments lead to inhibition of GST activity along with causing G2/M phase cell cycle arrest. Oral administration of 4 mg/kg SR4 leads to effective inhibition of tumor burdens in both syngeneic and nude mouse models of melanoma. The SR4 treatment was well tolerated and no overt toxicity was observed. The histopathological examination of resected tumor sections revealed decreased blood vessels, decrease in the levels of angiogenesis marker, CD31, and proliferation marker, Ki67, along with an increase in pAMPK levels. Western blot analyses of resected tumor lysates revealed increased PARP cleavage, Bim, pAMPK along with decreased pAkt, vimentin, fibronectin, CDK4 and cyclin B1. Thus, SR4 represents a novel candidate for the further development of mono and combinatorial therapies to effectively target aggressive and therapeutically refractory melanomas.


Biochemical Pharmacology | 2013

Novel compound 1,3-bis (3,5-dichlorophenyl) urea inhibits lung cancer progression

Sharad S. Singhal; James L. Figarola; Jyotsana Singhal; Lokesh Nagaprashantha; David Berz; Samuel Rahbar; Sanjay Awasthi

The successful clinical management of lung cancer is limited by frequent loss-of-function mutations in p53 which cooperates with chronic oxidant-stress induced adaptations in mercapturic acid pathway (MAP) which in turn regulates critical intracellular signaling cascades that determine therapeutic refractoriness. Hence, we investigated the anti-cancer effects and mechanisms of action of a novel compound called 1,3-bis(3,5-dichlorophenyl) urea (COH-SR4) in lung cancer. Treatment with COH-SR4 effectively inhibited the survival and clonogenic potential along with inducing apoptosis in lung cancer cells. COH-SR4 treatment caused the inhibition of GST activity and G0/G1 cell cycle arrest and inhibited the expression of cell cycle regulatory proteins CDK2, CDK4, cyclin A, cyclin B1, cyclin E1, and p27. The COH-SR4 activated AMPK pathway and knock-down of AMPK partially reversed the cytotoxic effects of COH-SR4 in lung cancer. COH-SR4 treatment lead to regression of established xenografts of H358 lung cancer cells without any overt toxicity. The histopathology of resected tumor sections revealed an increase in pAMPK, a decrease in the nuclear proliferative marker Ki67 and angiogenesis marker CD31. Western-blot analyses of resected tumor lysates revealed a decrease in pAkt and anti-apoptotic protein Bcl2 along with an increase in pAMPK, pro-apoptotic protein Bax and cleaved PARP levels. Importantly, COH-SR4 lead to decrease in the mesenchymal marker vimentin and increase in the normal epithelial marker E-cadherin. The results from our in-vitro and in-vivo studies reveal that COH-SR4 represents a novel candidate with strong mechanistic relevance to target aggressive and drug-resistant lung tumors.


Pharmaceutical Research | 2017

RLIP76 Inhibition: A Promising Developmental Therapy for Neuroblastoma

Sharad S. Singhal; Lokesh Nagaprashantha; Preeti Singhal; S. S. Singhal; Jyotsana Singhal; Sanjay Awasthi; David Horne

Refractory and relapsed neuroblastoma (NB) present with significant challenges in clinical management. Though primary NBs largely with wild-type p53 respond well to interventions, dysfunctional signaling in the p53 pathways in a MYCN oncogene driven background is found in a number of children with NB. The p53-mutant NB is largely unresponsive to available therapies and p53-independent targeted therapeutics represents a vital need in pediatric oncology. We analyzed the findings on mercapturic acid pathway (MAP) transporter RLIP76, which has broad and critical effects on multiple pathways as essential for carcinogenesis, oxidative stress and drug-resistance, is over-expressed in NB. RLIP76 inhibition by antibodies or depletion by antisense causes apoptosis and sensitization to chemo-radiotherapy in many cancers. In addition, recent studies indicate that the interactions between p53, MYCN, and WNT regulate apoptosis resistance and protein ubiquitination. RLIP76 and p53 interact with each other and colocalize in NB cells. Targeted depletion/inhibition of RLIP76 causes apoptosis and tumor regression in NB irrespective of p53 status. In the present review, we discuss the mechanisms and the role of RLIP76 in oxidative stress, drug-resistance and clathrin-dependent endocytosis (CDE), and analyze the molecular basis for the role of RLIP76 targeted approaches in the context principal drivers of NB pathogenesis, progression and drug-resistance. The evidence from RLIP76 studies in other cancers, when taken in the context of our recent RLIP76 focused mechanistic studies in NB, provides strong basis for further characterization and development of RLIP76 targeted therapies for NB.


Molecular Carcinogenesis | 2018

2′-Hydroxyflavanone inhibits in vitro and in vivo growth of breast cancer cells by targeting RLIP76

Jyotsana Singhal; Shireen Chikara; David Horne; Ravi Salgia; Sanjay Awasthi; Sharad S. Singhal

Consumption of citrus‐fruits is associated with reduced incidence of breast cancer (BC), the most common cancer diagnosed in women across the globe. In this study, we investigated the anticancer potential of 2‐Hydroxyflavanone (2HF) in BC. 2HF, a citrus‐bioflavonoid, has demonstrated anticancer properties in various cancers, but its anticancer role in BC has not been well studied. We investigated the in vitro and in vivo growth inhibitory effects of 2HF in an array of BC lines and in xenograft mouse models of ER‐positive and HER2‐positive BC cells. Compared to control, 2HF treatment reduced cell viability and suppressed migratory and invasive potential of BC cells, while, no growth inhibitory effects were observed in non‐tumorigenic breast epithelial cells. Further, 2HF inhibited the expression of RLIP76, a stress‐defensive and anti‐apoptotic protein, which is over‐expressed in BC cells and simultaneously reduced proliferation of BC cells. Nude mice bearing MCF7 or SKBR3 BC cells xenografts treated with either 2HF or targeting RLIP76 by RLIP76‐antisense or RLIP76‐antibody treatment had significantly lower tumor‐weight as compared to corresponding controls. In addition, Western‐blotting and immunohistochemical analysis of tumor tissue from control and treatment group mice showed that 2HF decreased protein expression levels of RLIP76, and the decrease was similar to those seen following RLIP76‐antisense treatment. Furthermore, 2HF decreased expression of Ki67, CD31, vimentin, inhibited phosphorylation of Akt and expression of survivin and Bcl2, and increased levels of Bax, E‐cadherin, and cleaved‐PARP. Therefore, our results indicate that 2HF may suppress BC growth in vitro and in vivo by targeting RLIP76, and may serve as a potential adjuvant treatment in BC patients.


Biochimica et Biophysica Acta | 2017

Targeting the mercapturic acid pathway and vicenin-2 for prevention of prostate cancer

Sharad S. Singhal; Divya Jain; Preeti Singhal; Sanjay Awasthi; Jyotsana Singhal; David Horne

Prostate cancer (CaP) is often androgen-sensitive malignancy and regresses upon inhibition of androgen signaling. However, CaP, nearly always develops androgen resistance and progresses to aggressive and lethal androgen-independent CaP, which lacks satisfactory therapy. For metastatic CaP, patients are often treated with Taxotere (docetaxel), a cytoskeleton-targeted chemotherapy drug, that provides transient palliative benefit but to which patients rapidly develop drug-resistance. Combination chemotherapy may be used instead, but is more toxic and adds little clinically relevant benefit over docetaxel. Therefore, novel strategies to enhance docetaxel efficacy are needed to effectively treat patients with metastatic CaP. The mercapturic acid pathway, which metabolizes genotoxic and pro-apoptotic toxins, is over-expressed in CaP and plays an important role in carcinogenesis, metastasis and therapy-resistance of CaP. Vicenin-2, a flavonoid derived from Tulsi (holy basil) as an active compound, inhibits the growth of CaP and increases the anti-tumor activity of docetaxel in-vitro and in-vivo. Taken together, the combination of vicenin-2 and docetaxel could be highly effective in the treatment of advanced and metastatic CaP due to their multi-targeting anti-tumor potential.


Cancer Research | 2012

Abstract 2697: Role of a novel flavonoid enriched in ocimum sanctum linn for prostate cancer chemoprevention and therapy

Sharad S. Singhal; Lokesh Nagaprashantha; Jyotsana Singhal; Sanjay Awasthi

The present study was conducted to determine the efficacy of novel flavonoid vicenin-2 (VCN-2), an active constituent of the medicinal herb Ocimum Sanctum Linn or Tulsi, as a single agent and in combination with docetaxel (DTL) in carcinoma of prostate (CaP). VCN-2 effectively induced anti-proliferative, anti-angiogenic and pro-apoptotic effect in CaP cells (PC-3, DU-145 and LNCaP) irrespective of their androgen responsiveness or p53 status. VCN-2 inhibited EGFR/Akt/mTOR/ p70S6K pathway along with decreasing c-Myc, cyclin D1, cyclin B1, CDK4, PCNA and hTERT in vitro. VCN-2 reached a level of 2.6 + 0.3 μM in serum after oral administration in mice which reflected that VCN-2 is orally absorbed. The i.v. administration of docetaxel (DTL), current drug of choice in androgen-independent CaP, is associated with dose-limiting toxicities like febrile neutropenia which has lead to characterization of alternate routes of administration and potential combinatorial regimens. In this regard, VCN-2 in combination with DTL synergistically inhibited the growth of prostate tumors in vivo with a greater decrease in the levels of AR, pIGF1R, pAkt, PCNA, cyclin D1, Ki67, CD31, and increase in E-cadherin. VCN-2 has been investigated for radio-protection and anti-inflammatory properties. This is the first study on the anti-cancer effects of VCN-2. In conclusion, our investigations collectively provide strong evidence that VCN-2 is effective against CaP progression along with indicating that VCN-2 and DTL co-administration is more effective than either of the single agents in androgen-independent prostate cancer. (Supported in part by NIH grant CA 77495) Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 2697. doi:1538-7445.AM2012-2697


Cancer Research | 2012

Abstract 3700: Anticancer effects and mechanisms of action of novel flavonoid didymin in neuroblastomas

Lokesh Nagaprashantha; Jyotsana Singhal; Sanjay Awasthi; Sharad S. Singhal

Neuroblastomas arise from the neural crest cells and represent the most common solid tumors outside the nervous system in children. The amplification of N-Myc plays a primary role in the pathogenesis of neuroblastomas whereas acquired mutations of p53 lead to refractory and relapsed cases of neuroblastomas. In this regard, dietary compounds which can target N-Myc and exert anti-cancer effects independent of p53 status acquire significance in the management of neuroblastomas. Hence, we investigated the anti-cancer properties of the flavonoid didymin in neuroblastomas. Didymin effectively inhibited proliferation and induced apoptosis irrespective of p53 status in neuroblastomas. Didymin down regulated PI3K, pAkt, Akt, vimentin and up regulated RKIP levels. Didymin induced G2/M arrest along with decreasing the levels of cyclin D1, CDK4 and cyclin B1. Importantly, didymin inhibited N-Myc as confirmed at protein, mRNA and transcriptional level by promoter-reporter assays. HPLC analysis of didymin (2 mg/kg b.w.) treated mice serum revealed effective oral absorption with free didymin concentration of 2.1 µM. Further in vivo mice xenografts studies revealed that didymin (2 mg/kg b.w.) treated animals had significant reductions in tumors size compared to controls. Didymin strongly inhibited the proliferation (Ki67) and angiogenesis (CD31) markers as well as N-Myc expression as revealed by the histopathological examination of paraffin embedded section of resected tumors. Collectively, our in vitro and in vivo studies elucidated the anti-cancer properties and mechanisms of action of a novel, orally active and palatable flavonoid didymin which makes it a potential new approach for neuroblastoma therapy (NANT) to target pediatric neuroblastomas. (Supported in part by NIH grant CA 77495) Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 3700. doi:1538-7445.AM2012-3700

Collaboration


Dive into the Jyotsana Singhal's collaboration.

Top Co-Authors

Avatar

Sanjay Awasthi

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Sharad S. Singhal

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar

David Horne

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James L. Figarola

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar

Preeti Singhal

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

S. S. Singhal

University of California

View shared research outputs
Top Co-Authors

Avatar

Arthur D. Riggs

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kathryn Leake

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar

Rit Vatsyayan

University of North Texas Health Science Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge