Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jyung-Hurng Liu is active.

Publication


Featured researches published by Jyung-Hurng Liu.


BMC Genomics | 2012

Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: new insights from bioinformatics analysis

Hanna Chepyshko; Chia-Ping Lai; Li-Ming Huang; Jyung-Hurng Liu; Jei-Fu Shaw

BackgroundGDSL esterases/lipases are a newly discovered subclass of lipolytic enzymes that are very important and attractive research subjects because of their multifunctional properties, such as broad substrate specificity and regiospecificity. Compared with the current knowledge regarding these enzymes in bacteria, our understanding of the plant GDSL enzymes is very limited, although the GDSL gene family in plant species include numerous members in many fully sequenced plant genomes. Only two genes from a large rice GDSL esterase/lipase gene family were previously characterised, and the majority of the members remain unknown. In the present study, we describe the rice OsGELP (Oryza sativa GDSL esterase/lipase protein) gene family at the genomic and proteomic levels, and use this knowledge to provide insights into the multifunctionality of the rice OsGELP enzymes.ResultsIn this study, an extensive bioinformatics analysis identified 114 genes in the rice OsGELP gene family. A complete overview of this family in rice is presented, including the chromosome locations, gene structures, phylogeny, and protein motifs. Among the OsGELPs and the plant GDSL esterase/lipase proteins of known functions, 41 motifs were found that represent the core secondary structure elements or appear specifically in different phylogenetic subclades. The specification and distribution of identified putative conserved clade-common and -specific peptide motifs, and their location on the predicted protein three dimensional structure may possibly signify their functional roles. Potentially important regions for substrate specificity are highlighted, in accordance with protein three-dimensional model and location of the phylogenetic specific conserved motifs. The differential expression of some representative genes were confirmed by quantitative real-time PCR. The phylogenetic analysis, together with protein motif architectures, and the expression profiling were analysed to predict the possible biological functions of the rice OsGELP genes.ConclusionsOur current genomic analysis, for the first time, presents fundamental information on the organization of the rice OsGELP gene family. With combination of the genomic, phylogenetic, microarray expression, protein motif distribution, and protein structure analyses, we were able to create supported basis for the functional prediction of many members in the rice GDSL esterase/lipase family. The present study provides a platform for the selection of candidate genes for further detailed functional study.


Journal of Biological Chemistry | 2006

Glycosphingolipid-facilitated Membrane Insertion and Internalization of Cobra Cardiotoxin THE SULFATIDE·CARDIOTOXIN COMPLEX STRUCTURE IN A MEMBRANE-LIKE ENVIRONMENT SUGGESTS A LIPID-DEPENDENT CELL-PENETRATING MECHANISM FOR MEMBRANE BINDING POLYPEPTIDES

Chia-Hui Wang; Jyung-Hurng Liu; Shao-Chen Lee; Chwan-Deng Hsiao; Wen-guey Wu

Cobra cardiotoxins, a family of basic polypeptides having lipid- and heparin-binding capacities similar to the cell-penetrating peptides, induce severe tissue necrosis and systolic heart arrest in snakebite victims. Whereas cardiotoxins are specifically retained on the cell surface via heparan sulfate-mediated processes, their lipid binding ability appears to be responsible, at least in part, for cardiotoxin-induced membrane leakage and cell death. Although the exact role of lipids involved in toxin-mediated cytotoxicity remains largely unknown, monoclonal anti-sulfatide antibody O4 has recently been shown to inhibit the action of CTX A3, the major cardiotoxin from Taiwan cobra venom, on cardiomyocytes by preventing cardiotoxin-induced membrane leakage and CTX A3 internalization into mitochondria. Here, we show that anti-sulfatide acts by blocking the binding of CTX A3 to the sulfatides in the plasma membrane to prevent sulfatide-dependent CTX A3 membrane pore formation and internalization. We also describe the crystal structure of a CTX A3-sulfatide complex in a membrane-like environment at 2.3 Å resolution. The unexpected orientation of the sulfatide fatty chains in the structure allows prediction of the mode of toxin insertion into the plasma membrane. CTX A3 recognizes both the headgroup and the ceramide interfacial region of sulfatide to induce a lipid conformational change that may play a key role in CTX A3 oligomerization and cellular internalization. This proposed lipid-mediated toxin translocation mechanism may also shed light on the cellular uptake mechanism of the amphiphilic cell-penetrating peptides known to involve multiple internalization pathways.


Journal of Biological Chemistry | 2004

Crystal Structure of PriB, a Primosomal DNA Replication Protein of Escherichia coli

Jyung-Hurng Liu; Tsai-Wang Chang; Cheng-Yang Huang; Sue-Une Chen; Huey-Nan Wu; Ming-Chung Chang; Chwan-Deng Hsiao

PriB is one of the Escherichia coli φX-type primosome proteins that are required for assembly of the primosome, a mobile multi-enzyme complex responsible for the initiation of DNA replication. Here we report the crystal structure of the E. coli PriB at 2.1 Å resolution by multi-wavelength anomalous diffraction using a mercury derivative. The polypeptide chain of PriB is structurally similar to that of single-stranded DNA-binding protein (SSB). However, the biological unit of PriB is a dimer, not a homotetramer like SSB. Electrophoretic mobility shift assays demonstrated that PriB binds single-stranded DNA and single-stranded RNA with comparable affinity. We also show that PriB binds single-stranded DNA with certain base preferences. Based on the PriB structural information and biochemical studies, we propose that the potential tetramer formation surface and several other regions of PriB may participate in protein-protein interaction during DNA replication. These findings may illuminate the role of PriB in φX-type primosome assembly.


Proteins | 2009

XC1028 from Xanthomonas campestris adopts a PilZ domain-like structure without a c-di-GMP switch.

Tso-Ning Li; Ko-Hsin Chin; Jyung-Hurng Liu; Andrew H.-J. Wang; Shan-Ho Chou

The crystal structure of XC1028 from Xanthomonas campestris has been determined to a resolution of 2.15 Å using the multiple anomalous dispersion approach. It bears significant sequence identity and similarity values of 64.10% and 70.09%, respectively, with PA2960, a protein indispensable for type IV pilus‐mediated twitching motility, after which the PilZ motif was first named. However, both XC1028 and PA2960 lack detectable c‐di‐GMP binding capability. Although XC1028 adopts a structure comprising a five‐stranded β‐barrel core similar to other canonical PilZ domains with robust c‐di‐GMP binding ability, considerable differences are observed in the N‐terminal motif; XC1028 assumes a compact five‐stranded β‐barrel without an extra long N‐terminal motif, whereas other canonical PilZ domains contain a long N‐terminal sequence embedded with an essential “c‐di‐GMP switch” motif. In addition, a β‐strand (β1) in the N‐terminal motif, running in exactly opposite polarity to that of XC1028, is found inserted into the parallel β3/β1′ strands, forming a completely antiparallel β4↓β3↑β1↓β1′↑ sheet in the canonical PilZ domains. Such dramatic structural differences at the N‐terminus may account for the diminished c‐di‐GMP binding capability of XC1028, and suggest that interactions with additional proteins are necessary to bind c‐di‐GMP for type IV fimbriae assembly. Proteins 2009.


Journal of Biological Chemistry | 2007

Small Ubiquitin-like Modifier Modification Regulates the DNA Binding Activity of Glial Cell Missing Drosophila Homolog a

Chih-Chine Chou; Ching-Wen Chang; Jyung-Hurng Liu; Liang-Fu Chen; Chwan-Deng Hsiao

Glial cell missing Drosophila homolog a (GCMa) is an essential transcription factor for placental development, which controls the differentiation of the syncytiotrophoblast layer. Although the activity of GCMa can be post-translationally regulated by protein phosphorylation, ubiquitination, and acetylation, it is unknown whether GCMa activity can be regulated by sumoylation. In this report, we investigated the role of sumoylation in the regulation of GCMa activity. We demonstrated that Ubc9, the E2 component of the sumoylation machinery, specifically interacts with the N-terminal domain of GCMa and promotes GCMa sumoylation on lysine 156. Moreover, GCMa-mediated transcriptional activation was repressed by sumoylation but was enhanced in the presence of the SUMO-specific protease, SENP1. The repressive effect of sumoylation on GCMa transcriptional activity was attributed to decreased DNA binding activity of GCMa. Furthermore, structural analysis revealed a steric clash between the SUMO1 moiety of sumoylated GCMa and the DNA-binding surfaces of GCMa, which may destabilize the interaction between GCMa and its cognate DNA sequence. Our study demonstrates that GCMa is a new sumoylation substrate and its activity is down-regulated by sumoylation.


Viruses | 2016

Epitope Identification and Application for Diagnosis of Duck Tembusu Virus Infections in Ducks

Chenxi Li; Junyan Liu; Wulin Shaozhou; Xiaofei Bai; Qingshan Zhang; Ronghong Hua; Jyung-Hurng Liu; Ming Liu; Yun Zhang

Duck Tembusu virus (DTMUV) causes substantial egg drop disease. DTMUV was first identified in China and rapidly spread to Malaysia and Thailand. The antigenicity of the DTMUV E protein has not yet been characterized. Here, we investigated antigenic sites on the E protein using the non-neutralizing monoclonal antibodies (mAbs) 1F3 and 1A5. Two minimal epitopes were mapped to 221LD/NLPW225 and 87YAEYI91 by using phage display and mutagenesis. DTMUV-positive duck sera reacted with the epitopes, thus indicating the importance of the minimal amino acids of the epitopes for antibody-epitope binding. The performance of the dot blotting assay with the corresponding positive sera indicated that YAEYI was DTMUV type-specific, whereas 221LD/NLPW225 was a cross-reactive epitope for West Nile virus (WNV), dengue virus (DENV), and Japanese encephalitis virus (JEV) and corresponded to conserved and variable amino acid sequences among these strains. The structure model of the E protein revealed that YAEYI and LD/NLPW were located on domain (D) II, which confirmed that DII might contain a type-specific non-neutralizing epitope. The YAEYI epitope-based antigen demonstrated its diagnostic potential by reacting with high specificity to serum samples obtained from DTMUV-infected ducks. Based on these observations, a YAEYI-based serological test could be used for DTMUV surveillance and could differentiate DTMUV infections from JEV or WNV infections. These findings provide new insights into the organization of epitopes on flavivirus E proteins that might be valuable for the development of epitope-based serological diagnostic tests for DTMUV.


Biochimica et Biophysica Acta | 2014

Structural characteristics of the nonallosteric human cytosolic malic enzyme

Ju-Yi Hsieh; Shao-Yu Li; Meng-Chun Chen; Pai-Chun Yang; Hui-Yi Chen; Nei-Li Chan; Jyung-Hurng Liu; Hui-Chih Hung

Human cytosolic NADP(+)-dependent malic enzyme (c-NADP-ME) is neither a cooperative nor an allosteric enzyme, whereas mitochondrial NAD(P)(+)-dependent malic enzyme (m-NAD(P)-ME) is allosterically activated by fumarate. This study examines the molecular basis for the different allosteric properties and quaternary structural stability of m-NAD(P)-ME and c-NADP-ME. Multiple residues corresponding to the fumarate-binding site were mutated in human c-NADP-ME to correspond to those found in human m-NAD(P)-ME. Additionally, the crystal structure of the apo (ligand-free) human c-NADP-ME conformation was determined. Kinetic studies indicated no significant difference between the wild-type and mutant enzymes in Km,NADP, Km,malate, and kcat. A chimeric enzyme, [51-105]_c-NADP-ME, was designed to include the putative fumarate-binding site of m-NAD(P)-ME at the dimer interface of c-NADP-ME; however, this chimera remained nonallosteric. In addition to fumarate activation, the quaternary structural stability of c-NADP-ME and m-NAD(P)-ME is quite different; c-NADP-ME is a stable tetramer, whereas m-NAD(P)-ME exists in equilibrium between a dimer and a tetramer. The quaternary structures for the S57K/N59E/E73K/S102D and S57K/N59E/E73K/S102D/H74K/D78P/D80E/D87G mutants of c-NADP-ME are tetrameric, whereas the K57S/E59N/K73E/D102S m-NAD(P)-ME quadruple mutant is primarily monomeric with some dimer formation. These results strongly suggest that the structural features near the fumarate-binding site and the dimer interface are highly related to the quaternary structural stability of c-NADP-ME and m-NAD(P)-ME. In this study, we attempt to delineate the structural features governing the fumarate-induced allosteric activation of malic enzyme.


Scientific Reports | 2016

Identification of a New Broadly Cross-reactive Epitope within Domain III of the Duck Tembusu Virus E Protein.

Chenxi Li; Xiaofei Bai; Runze Meng; Wulin Shaozhou; Qingshan Zhang; Ronghong Hua; Jyung-Hurng Liu; Ming Liu; Yun Zhang

In 2010, a pathogenic flavivirus termed duck Tembusu virus (DTMUV) caused widespread outbreak of egg-drop syndrome in domesticated ducks in China. Although the glycoprotein E of DTMUV is an important structural component of the virus, the B-cell epitopes of this protein remains uncharacterized. Using phage display and mutagenesis, we identified a minimal B-cell epitope, 374EXE/DPPFG380, that mediates binding to a nonneutralizing monoclonal antibody. DTMUV-positive duck serum reacted with the epitope, and amino acid substitutions revealed the specific amino acids that are essential for antibody binding. Dot-blot assays of various flavivirus-positive sera indicated that EXE/DPPFG is a cross-reactive epitope in most flaviviruses, including Zika, West Nile, Yellow fever, dengue, and Japanese encephalitis viruses. These findings indicate that the epitope sequence is conserved among many strains of mosquito-borne flavivirus. Protein structure modeling revealed that the epitope is located in domain III of the DTMUV E protein. Together, these results provide new insights on the broad cross-reactivity of a B-cell binding site of the E protein of flaviviruses, which can be exploited as a diagnostic or therapeutic target for identifying, studying, or treating DTMUV and other flavivirus infections.


PLOS ONE | 2015

Methylatable Signaling Helix Coordinated Inhibitory Receiver Domain in Sensor Kinase Modulates Environmental Stress Response in Bacillus Cereus

Jung-Chi Chen; Jyung-Hurng Liu; Duen-Wei Hsu; Jwu-Ching Shu; Chien-Yen Chen; Chien-Cheng Chen

σB, an alternative transcription factor, controls the response of the cell to a variety of environmental stresses in Bacillus cereus. Previously, we reported that RsbM negatively regulates σB through the methylation of RsbK, a hybrid sensor kinase, on a signaling helix (S-helix). However, RsbK comprises a C-terminal receiver (REC) domain whose function remains unclear. In this study, deletion of the C-terminal REC domain of RsbK resulted in high constitutive σB expression independent of environmental stimuli. Thus, the REC domain may serve as an inhibitory element. Mutagenic substitution was employed to modify the putative phospho-acceptor residue D827 in the REC domain of RsbK. The expression of RsbKD827N and RsbKD827E exhibited high constitutive σB, indicating that D827, if phosphorylatable, possibly participates in σB regulation. Bacterial two-hybrid analyses demonstrated that RsbK forms a homodimer and the REC domain interacts mainly with the histidine kinase (HK) domain and partly with the S-helix. In particular, co-expression of RsbM strengthens the interaction between the REC domain and the S-helix. Consistently, our structural model predicts a significant interaction between the HK and REC domains of the RsbK intradimer. Here, we demonstrated that coordinated the methylatable S-helix and the REC domain of RsbK is functionally required to modulate σB-mediated stress response in B. cereus and maybe ubiquitous in microorganisms encoded RsbK-type sensor kinases.


Biochemical Journal | 2009

Dual roles of Lys(57) at the dimer interface of human mitochondrial NAD(P)+-dependent malic enzyme.

Ju-Yi Hsieh; Jyung-Hurng Liu; Yi-Wen Fang; Hui-Chih Hung

Human m-NAD(P)-ME [mitochondrial NAD(P)+-dependent ME (malic enzyme)] is a homotetramer, which is allosterically activated by the binding of fumarate. The fumarate-binding site is located at the dimer interface of the NAD(P)-ME. In the present study, we decipher the functional role of the residue Lys57, which resides at the fumarate-binding site and dimer interface, and thus may be involved in the allosteric regulation and subunit-subunit interaction of the enzyme. In the present study, Lys57 is replaced with alanine, cysteine, serine and arginine residues. Site-directed mutagenesis and kinetic analysis strongly suggest that Lys57 is important for the fumarate-induced activation and quaternary structural organization of the enzyme. Lys57 mutant enzymes demonstrate a reduction of Km and an elevation of kcat following induction by fumarate binding, and also display a much higher maximal activation threshold than WT (wild-type), indicating that these Lys57 mutant enzymes have lower affinity for the effector fumarate. Furthermore, mutation of Lys57 in m-NAD(P)-ME causes the enzyme to become less active and lose co-operativity. It also increased K0.5,malate and decreased kcat values, indicating that the catalytic power of these mutant enzymes was significantly impaired following mutation of Lys57. Analytical ultracentrifugation analysis demonstrates that the K57A, K57S and K57C mutant enzymes dissociate predominantly into dimers, with some monomers present, whereas the K57R mutant forms a mixture of dimers and tetramers, with a small amount of the enzyme in monomeric form. The dimeric form of these Lys57 mutants, however, cannot be reconstituted into tetramers with the addition of fumarate. Modelling structures of the Lys57 mutant enzymes show that the hydrogen bond network in the dimer interface where Lys57 resides may be reduced compared with WT. Although the fumarate-induced activation effects are partially maintained in these Lys57 mutant enzymes, the mutant enzymes cannot be reconstituted into tetramers through fumarate binding and cannot recover their full enzymatic activity. In the present study, we demonstrate that the Lys57 residue plays dual functional roles in the structural integrity of the allosteric site and in the subunit-subunit interaction at the dimer interface of human m-NAD(P)-ME.

Collaboration


Dive into the Jyung-Hurng Liu's collaboration.

Top Co-Authors

Avatar

Hui-Chih Hung

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ju-Yi Hsieh

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar

Guang-Yaw Liu

Chung Shan Medical University

View shared research outputs
Top Co-Authors

Avatar

Chang-Hao Huang

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar

Day-Yu Chao

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jedhan Ucat Galula

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mei-Ying Liao

National Chung Hsing University

View shared research outputs
Researchain Logo
Decentralizing Knowledge