Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where K. Christian Kemp is active.

Publication


Featured researches published by K. Christian Kemp.


Chemical Reviews | 2012

Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications.

Vasilios Georgakilas; Michal Otyepka; Athanasios B. Bourlinos; Vimlesh Chandra; Namdong Kim; K. Christian Kemp; Pavel Hobza; Radek Zboril; Kwang S. Kim

Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,‡ Vimlesh Chandra, Namdong Kim, K. Christian Kemp, Pavel Hobza,‡,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim* †Institute of Materials Science, NCSR “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece ‡Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, Pohang 790-784, Korea Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo naḿ. 2, 166 10 Prague 6, Czech Republic


Chemical Reviews | 2016

Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications

Vasilios Georgakilas; Jitendra N. Tiwari; K. Christian Kemp; Jason A. Perman; Athanasios B. Bourlinos; Kwang S. Kim; Radek Zboril

This Review focuses on noncovalent functionalization of graphene and graphene oxide with various species involving biomolecules, polymers, drugs, metals and metal oxide-based nanoparticles, quantum dots, magnetic nanostructures, other carbon allotropes (fullerenes, nanodiamonds, and carbon nanotubes), and graphene analogues (MoS2, WS2). A brief description of π-π interactions, van der Waals forces, ionic interactions, and hydrogen bonding allowing noncovalent modification of graphene and graphene oxide is first given. The main part of this Review is devoted to tailored functionalization for applications in drug delivery, energy materials, solar cells, water splitting, biosensing, bioimaging, environmental, catalytic, photocatalytic, and biomedical technologies. A significant part of this Review explores the possibilities of graphene/graphene oxide-based 3D superstructures and their use in lithium-ion batteries. This Review ends with a look at challenges and future prospects of noncovalently modified graphene and graphene oxide.


Nanotechnology | 2012

Graphene?SnO2 composites for highly efficient photocatalytic degradation of methylene blue under sunlight

Humaira Seema; K. Christian Kemp; Vimlesh Chandra; Kwang S. Kim

Graphene sheets decorated with SnO(2) nanoparticles (RGO-SnO(2)) were prepared via a redox reaction between graphene oxide (GO) and SnCl(2). Graphene oxide (GO) was reduced to graphene (RGO) and Sn(2+) was oxidized to SnO(2) during the redox reaction, leading to a homogeneous distribution of SnO(2) nanoparticles on RGO sheets. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images show uniform distribution of the nanoparticles on the RGO surface and high-resolution transmission electron microscopy (HRTEM) shows an average particle size of 3-5 nm. The RGO-SnO(2) composite showed an enhanced photocatalytic degradation activity for the organic dye methylene blue under sunlight compared to bare SnO(2) nanoparticles. This result leads us to believe that the RGO-SnO(2) composite could be used in catalytic photodegradation of other organic dyes.


ACS Nano | 2016

Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules

Jitendra N. Tiwari; Varun Vij; K. Christian Kemp; Kwang S. Kim

The study of electrochemical behavior of bioactive molecules has become one of the most rapidly developing scientific fields. Biotechnology and biomedical engineering fields have a vested interest in constructing more precise and accurate voltammetric/amperometric biosensors. One rapidly growing area of biosensor design involves incorporation of carbon-based nanomaterials in working electrodes, such as one-dimensional carbon nanotubes, two-dimensional graphene, and graphene oxide. In this review article, we give a brief overview describing the voltammetric techniques and how these techniques are applied in biosensing, as well as the details surrounding important biosensing concepts of sensitivity and limits of detection. Building on these important concepts, we show how the sensitivity and limit of detection can be tuned by including carbon-based nanomaterials in the fabrication of biosensors. The sensing of biomolecules including glucose, dopamine, proteins, enzymes, uric acid, DNA, RNA, and H2O2 traditionally employs enzymes in detection; however, these enzymes denature easily, and as such, enzymeless methods are highly desired. Here we draw an important distinction between enzymeless and enzyme-containing carbon-nanomaterial-based biosensors. The review ends with an outlook of future concepts that can be employed in biosensor fabrication, as well as limitations of already proposed materials and how such sensing can be enhanced. As such, this review can act as a roadmap to guide researchers toward concepts that can be employed in the design of next generation biosensors, while also highlighting the current advancements in the field.


Nature Communications | 2013

Stable platinum nanoclusters on genomic DNA–graphene oxide with a high oxygen reduction reaction activity

Jitendra N. Tiwari; Krishna Nath; Susheel Kumar; Rajanish N. Tiwari; K. Christian Kemp; Nhien H. Le; Duck Hyun Youn; Jae Sung Lee; Kwang S. Kim

Nanosize platinum clusters with small diameters of 2–4 nm are known to be excellent catalysts for the oxygen reduction reaction. The inherent catalytic activity of smaller platinum clusters has not yet been reported due to a lack of preparation methods to control their size (<2 nm). Here we report the synthesis of platinum clusters (diameter ≤1.4 nm) deposited on genomic double-stranded DNA–graphene oxide composites, and their high-performance electrocatalysis of the oxygen reduction reaction. The electrochemical behaviour, characterized by oxygen reduction reaction onset potential, half-wave potential, specific activity, mass activity, accelerated durability test (10,000 cycles) and cyclic voltammetry stability (10,000 cycles) is attributed to the strong interaction between the nanosize platinum clusters and the DNA–graphene oxide composite, which induces modulation in the electronic structure of the platinum clusters. Furthermore, we show that the platinum cluster/DNA–graphene oxide composite possesses notable environmental durability and stability, vital for high-performance fuel cells and batteries.


ACS Applied Materials & Interfaces | 2014

Highly stable CO2/N2 and CO2/CH4 selectivity in hyper-cross-linked heterocyclic porous polymers.

Muhammad Saleh; Han Myoung Lee; K. Christian Kemp; Kwang S. Kim

The largest obstacles for landfill/flue gas separation using microporous materials are small adsorption values and low selectivity ratios. This study demonstrates that these adsorption and selectivity challenges can be overcome by utilizing a series of hyper-cross-linked heterocyclic polymer networks. These microporous organic polymers (MOPs) were synthesized in a single step by inexpensive Friedel-Crafts-catalyzed reactions using dimethoxymethane as an external linker. The amorphous networks show moderate Brunauer-Emmett-Teller surface areas up to 1022 m(2) g(-1), a narrow pore size distribution in the range from 6 to 8 Å, and high physicochemical stability. Owing to the presence of the heteroatomic pore surfaces in the networks, they exhibit maximum storage capacities for CO2 of 11.4 wt % at 273 K and 1 atm. Additionally, remarkable selectivity ratios for CO2 adsorption over N2 (100) and CH4 (15) at 273 K were obtained. More importantly, as compared with any other porous materials, much higher selectivity for CO2/N2 (80) and CO2/CH4 (15) was observed at 298 K, showing that these selectivity ratios remain high at elevated temperature. The very high CO2/N2 selectivity values are ascribed to the binding affinity of abundantly available electron-rich basic heteroatoms, high CO2 isoteric heats of adsorption (49-38 kJ mol(-1)), and the predominantly microporous nature of the MOPs. Binding energies calculated using the high level of ab initio theory showed that the selectivity is indeed attributed to the heteroatom-CO2 interactions. By employing an easy and economical synthesis procedure these MOPs with high thermochemical stability are believed to be a promising candidate for selective CO2 capture.


Journal of Environmental Management | 2013

Synthesis of nano zerovalent iron nanoparticles – Graphene composite for the treatment of lead contaminated water

Humera Jabeen; K. Christian Kemp; Vimlesh Chandra

A Nano zerovalent iron nanoparticles graphene composite (G-nZVI) was prepared via a sodium borohydride reduction of graphene oxide and iron chloride under an argon atmosphere. Powder X-ray diffraction patterns showed the formation of the magnetic graphene/nanoscale-zerovalent-iron (G-nZVI) composites and bare nanoscale-zerovalent-iron (nZVI) particles. TEM analysis shows the formation of ~10 nm particles. Adsorption experiments show a maximum Pb(II) adsorption capacity for the G-nZVI composite with 6 wt% graphene oxide loading. Additionally the effects of pH, temperature, contact time, ionic strength and initial metal ion concentration on Pb(II) ion removal were studied. X-ray photoelectron spectroscopy analysis after adsorption results confirmed the composites ability to adsorb and immobilize lead more efficiently in its zerovalent and bivalent forms, as compared to bare iron nanoparticles. The adsorption of Pb(II) ions fit a pseudo-second-order kinetic model, and adsorption isotherms can be described using the Freundlich equations. G-nZVI shows great potential as an efficient adsorbent for lead immobilization from water, as it exhibits stability, reducing power, a large surface area, and magnetic separation.


Nanotechnology | 2013

Synthesis of N-doped microporous carbon via chemical activation of polyindole-modified graphene oxide sheets for selective carbon dioxide adsorption.

Muhammad Saleh; Vimlesh Chandra; K. Christian Kemp; Kwang S. Kim

A polyindole-reduced graphene oxide (PIG) hybrid was synthesized by reducing graphene oxide sheets in the presence of polyindole. We have shown PIG as a material for capturing carbon dioxide (CO2). The PIG hybrid was chemically activated at temperatures of 400-800 °C, which resulted in nitrogen (N)-doped graphene sheets. The N-doped graphene sheets are microporous with an adsorption pore size of 0.6 nm for CO2 and show a maximum (Brunauer, Emmet and Teller) surface area of 936 m(2) g(-1). The hybrid activated at 600 °C (PIG6) possesses a surface area of 534 m(2) g(-1) and a micropore volume of 0.29 cm(3) g(-1). PIG6 shows a maximum CO2 adsorption capacity of 3.0 mmol g(-1) at 25 °C and 1 atm. This high CO2 uptake is due to the highly microporous character of the material and its N content. The material retains its original adsorption capacity on recycling even after 10 cycles (within experimental error). PIG6 also shows high adsorption selectivity ratios for CO2 over N2, CH4 and H2 of 23, 4 and 85 at 25 °C, respectively.


Journal of Materials Chemistry | 2013

Solution-processable conductive micro-hydrogels of nanoparticle/graphene platelets produced by reversible self-assembly and aqueous exfoliation

Nhien H. Le; Humaira Seema; K. Christian Kemp; Nisar Ahmed; Jitendra N. Tiwari; Sungjin Park; Kwang S. Kim

Preventing the π–π restacking of graphene-based platelets is essential to advance their fundamental attributes in a wide range of scalable chemical processes. Using macroscopic hydrogels of water-intercalated metal-oxide/graphene platelets is a novel approach to produce microscopic hydrogels with extraordinary surface accessibility and electronic properties. Nanoparticle decoration and surface hydration prevent irreversible π–π stacking, paving the way for reversible self-assembly and aqueous-phase exfoliation. The hydrophilic nanoparticle coating facilitates the colloidal stability of hybrid microgels in aqueous and organic media without the assistance of surfactants. This allows these materials to versatilely function as basic building blocks as well as applied nanomaterials in wet-chemistry applications. The preservation of unique properties of SnO2-decorated graphene platelets leads to significantly enhanced adsorptive and photocatalytic activities. By exploiting the fluorescence quenching effect, a dye–hydrogel complex can be utilized as a supramolecular sensor for sensitive DNA detection. This study also initiates an innovative synthetic strategy to synthesize high-quality graphene-based nanomaterials.


Nanoscale | 2013

Environmental applications using graphene composites: water remediation and gas adsorption

K. Christian Kemp; Humaira Seema; Muhammad Saleh; Nhien H. Le; Kandula Mahesh; Vimlesh Chandra; Kwang S. Kim

Collaboration


Dive into the K. Christian Kemp's collaboration.

Top Co-Authors

Avatar

Kwang S. Kim

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Vimlesh Chandra

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jitendra N. Tiwari

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Nhien H. Le

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Humaira Seema

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Muhammad Saleh

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kandula Mahesh

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Rajanish N. Tiwari

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Duck Hyun Youn

Ulsan National Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge