K. Christopher Garcia
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by K. Christopher Garcia.
Cell | 2009
Chan Young Park; Paul J. Hoover; Franklin M. Mullins; Priti Bachhawat; Elizabeth D. Covington; Stefan Raunser; Thomas Walz; K. Christopher Garcia; Ricardo E. Dolmetsch; Richard S. Lewis
Store-operated Ca(2+) channels activated by the depletion of Ca(2+) from the endoplasmic reticulum (ER) are a major Ca(2+) entry pathway in nonexcitable cells and are essential for T cell activation and adaptive immunity. After store depletion, the ER Ca(2+) sensor STIM1 and the CRAC channel protein Orai1 redistribute to ER-plasma membrane (PM) junctions, but the fundamental issue of how STIM1 activates the CRAC channel at these sites is unresolved. Here, we identify a minimal, highly conserved 107-aa CRAC activation domain (CAD) of STIM1 that binds directly to the N and C termini of Orai1 to open the CRAC channel. Purified CAD forms a tetramer that clusters CRAC channels, but analysis of STIM1 mutants reveals that channel clustering is not sufficient for channel activation. These studies establish a molecular mechanism for store-operated Ca(2+) entry in which the direct binding of STIM1 to Orai1 drives the accumulation and the activation of CRAC channels at ER-PM junctions.
Cell | 2009
Cagla Eroglu; Nicola J. Allen; Michael W. Susman; Nancy A. O'Rourke; Chan Young Park; Engin Özkan; Chandrani Chakraborty; Sara B. Mulinyawe; Douglas S. Annis; Andrew D. Huberman; Eric M. Green; Jack Lawler; Ricardo E. Dolmetsch; K. Christopher Garcia; Stephen J. Smith; Z. David Luo; Arnon Rosenthal; Deane F. Mosher; Ben A. Barres
Synapses are asymmetric cellular adhesions that are critical for nervous system development and function, but the mechanisms that induce their formation are not well understood. We have previously identified thrombospondin as an astrocyte-secreted protein that promotes central nervous system (CNS) synaptogenesis. Here, we identify the neuronal thrombospondin receptor involved in CNS synapse formation as alpha2delta-1, the receptor for the anti-epileptic and analgesic drug gabapentin. We show that the VWF-A domain of alpha2delta-1 interacts with the epidermal growth factor-like repeats common to all thrombospondins. alpha2delta-1 overexpression increases synaptogenesis in vitro and in vivo and is required postsynaptically for thrombospondin- and astrocyte-induced synapse formation in vitro. Gabapentin antagonizes thrombospondin binding to alpha2delta-1 and powerfully inhibits excitatory synapse formation in vitro and in vivo. These findings identify alpha2delta-1 as a receptor involved in excitatory synapse formation and suggest that gabapentin may function therapeutically by blocking new synapse formation.
Nature | 2013
Andrew C. Kruse; Aaron M. Ring; Aashish Manglik; Jianxin Hu; Kelly Hu; Katrin Eitel; Harald Hübner; Els Pardon; Celine Valant; Patrick M. Sexton; Arthur Christopoulos; Christian C. Felder; Peter Gmeiner; Jan Steyaert; William I. Weis; K. Christopher Garcia; Jürgen Wess; Brian K. Kobilka
Despite recent advances in crystallography and the availability of G-protein-coupled receptor (GPCR) structures, little is known about the mechanism of their activation process, as only the β2 adrenergic receptor (β2AR) and rhodopsin have been crystallized in fully active conformations. Here we report the structure of an agonist-bound, active state of the human M2 muscarinic acetylcholine receptor stabilized by a G-protein mimetic camelid antibody fragment isolated by conformational selection using yeast surface display. In addition to the expected changes in the intracellular surface, the structure reveals larger conformational changes in the extracellular region and orthosteric binding site than observed in the active states of the β2AR and rhodopsin. We also report the structure of the M2 receptor simultaneously bound to the orthosteric agonist iperoxo and the positive allosteric modulator LY2119620. This structure reveals that LY2119620 recognizes a largely pre-formed binding site in the extracellular vestibule of the iperoxo-bound receptor, inducing a slight contraction of this outer binding pocket. These structures offer important insights into the activation mechanism and allosteric modulation of muscarinic receptors.
Cell | 2008
Sherry L. LaPorte; Z. Sean Juo; Jana Vaclavikova; Leremy A. Colf; Xiulan Qi; Nicola M. Heller; Achsah D. Keegan; K. Christopher Garcia
Interleukin-4 and Interleukin-13 are cytokines critical to the development of T cell-mediated humoral immune responses, which are associated with allergy and asthma, and exert their actions through three different combinations of shared receptors. Here we present the crystal structures of the complete set of type I (IL-4R alpha/gamma(c)/IL-4) and type II (IL-4R alpha/IL-13R alpha1/IL-4, IL-4R alpha/IL-13R alpha1/IL-13) ternary signaling complexes. The type I complex reveals a structural basis for gamma(c)s ability to recognize six different gamma(c)-cytokines. The two type II complexes utilize an unusual top-mounted Ig-like domain on IL-13R alpha1 for a novel mode of cytokine engagement that contributes to a reversal in the IL-4 versus IL-13 ternary complex assembly sequences, which are mediated through substantially different recognition chemistries. We also show that the type II receptor heterodimer signals with different potencies in response to IL-4 versus IL-13 and suggest that the extracellular cytokine-receptor interactions are modulating intracellular membrane-proximal signaling events.
Nature | 2002
Lawren C. Wu; Delphine S. Tuot; Daniel S. Lyons; K. Christopher Garcia; Mark M. Davis
T cells probe a diverse milieu of peptides presented by molecules of the major histocompatibility complex (MHC) by using the T-cell receptor (TCR) to scan these ligands with high sensitivity and specificity. Here we describe a physical basis for this scanning process by studying the residues involved in both the initial association and the stable binding of TCR to peptide–MHC, using the well-characterized TCR and peptide–MHC pair of 2B4 and MCC-IEk (moth cytochrome c, residues 88–103). We show that MHC contacts dictate the initial association, guiding TCR docking in a way that is mainly independent of the peptide. Subsequently, MCC-IEk peptide contacts dominate stabilization, imparting specificity and influencing T-cell activation by modulating the duration of binding. This functional subdivision of the peptide–MHC ligand suggests that a two-step process for TCR recognition facilitates the efficient scanning of diverse peptide–MHC complexes on the surface of cells and also makes TCRs inherently crossreactive towards different peptides bound by the same MHC.
Science | 2005
Xinquan Wang; Mathias Rickert; K. Christopher Garcia
Interleukin-2 (IL-2) is an immunoregulatory cytokine that acts through a quaternary receptor signaling complex containing alpha (IL-2Rα), beta (IL-2Rβ), and common gamma chain (gc) receptors. In the structure of the quaternary ectodomain complex as visualized at a resolution of 2.3 angstroms, the binding of IL-2Rα to IL-2 stabilizes a secondary binding site for presentation to IL-2Rβ. γc is then recruited to the composite surface formed by the IL-2/IL-2Rβ complex. Consistent with its role as a shared receptor for IL-4, IL-7, IL-9, IL-15, and IL-21, γc forms degenerate contacts with IL-2. The structure of γc provides a rationale for loss-of-function mutations found in patients with X-linked severe combined immunodeficiency diseases (X-SCID). This complex structure provides a framework for other γc-dependent cytokine-receptor interactions and for the engineering of improved IL-2 therapeutics.
Cell | 2014
Michael E. Birnbaum; Juan L. Mendoza; Dhruv K. Sethi; Shen Dong; Jacob Glanville; Jessica Dobbins; Engin Özkan; Mark M. Davis; Kai W. Wucherpfennig; K. Christopher Garcia
In order to survey a universe of major histocompatibility complex (MHC)-presented peptide antigens whose numbers greatly exceed the diversity of the T cell repertoire, T cell receptors (TCRs) are thought to be cross-reactive. However, the nature and extent of TCR cross-reactivity has not been conclusively measured experimentally. We developed a system to identify MHC-presented peptide ligands by combining TCR selection of highly diverse yeast-displayed peptide-MHC libraries with deep sequencing. Although we identified hundreds of peptides reactive with each of five different mouse and human TCRs, the selected peptides possessed TCR recognition motifs that bore a close resemblance to their known antigens. This structural conservation of the TCR interaction surface allowed us to exploit deep-sequencing information to computationally identify activating microbial and self-ligands for human autoimmune TCRs. The mechanistic basis of TCR cross-reactivity described here enables effective surveillance of diverse self and foreign antigens without necessitating degenerate recognition of nonhomologous peptides.
Annual Review of Immunology | 2009
Xinquan Wang; Patrick J. Lupardus; Sherry L. LaPorte; K. Christopher Garcia
Recent structural information for complexes of cytokine receptor ectodomains bound to their ligands has significantly expanded our understanding of the macromolecular topology and ligand recognition mechanisms used by our three principal shared cytokine signaling receptors-gp130, gamma(c), and beta(c). The gp130 family receptors intricately coordinate three structurally unique cytokine-binding sites on their four-helix bundle cytokine ligands to assemble multimeric signaling complexes. These organizing principles serve as topological blueprints for the entire gp130 family of cytokines. Novel structures of gamma(c) and beta(c) complexes show us new twists, such as the use of a nonstandard sushi-type alpha receptors for IL-2 and IL-15 in assembling quaternary gamma(c) signaling complexes and an antiparallel interlocked dimer in the GM-CSF signaling complex with beta(c). Unlike gp130, which appears to recognize vastly different cytokine surfaces in chemically unique fashions for each ligand, the gamma(c)-dependent cytokines appear to seek out some semblance of a knobs-in-holes shape recognition code in order to engage gamma(c) in related fashions. We discuss the structural similarities and differences between these three shared cytokine receptors, as well as the implications for transmembrane signaling.
Molecular Cell | 2003
Michelle Krogsgaard; Nelida Prado; Erin J. Adams; Xiaolin He; Dar Chone Chow; Darcy B. Wilson; K. Christopher Garcia; Mark M. Davis
While in many cases the half-life of T cell receptor (TCR) binding to a particular ligand is a good predictor of activation potential, numerous exceptions suggest that other physical parameter(s) must also play a role. Accordingly, we analyzed the thermodynamics of TCR binding to a series of peptide-MHC ligands, three of which are more stimulatory than their stability of binding would predict. Strikingly, we find that during TCR binding these outliers show anomalously large changes in heat capacity, an indicator of conformational change or flexibility in a binding interaction. By combining the values for heat capacity (DeltaCp) and the half-life of TCR binding (t(1/2)), we find that we can accurately predict the degree of T cell stimulation. Structural analysis shows significant changes in the central TCR contact residue of the peptide-MHC, indicating that structural rearrangements within the TCR-peptide-MHC interface can contribute to T cell activation.
Nature | 2013
Aaron M. Ring; Aashish Manglik; Andrew C. Kruse; Michael D. Enos; William I. Weis; K. Christopher Garcia; Brian K. Kobilka
G-protein-coupled receptors (GPCRs) are integral membrane proteins that have an essential role in human physiology, yet the molecular processes through which they bind to their endogenous agonists and activate effector proteins remain poorly understood. So far, it has not been possible to capture an active-state GPCR bound to its native neurotransmitter. Crystal structures of agonist-bound GPCRs have relied on the use of either exceptionally high-affinity agonists or receptor stabilization by mutagenesis. Many natural agonists such as adrenaline, which activates the β2-adrenoceptor (β2AR), bind with relatively low affinity, and they are often chemically unstable. Using directed evolution, we engineered a high-affinity camelid antibody fragment that stabilizes the active state of the β2AR, and used this to obtain crystal structures of the activated receptor bound to multiple ligands. Here we present structures of the active-state human β2AR bound to three chemically distinct agonists: the ultrahigh-affinity agonist BI167107, the high-affinity catecholamine agonist hydroxybenzyl isoproterenol, and the low-affinity endogenous agonist adrenaline. The crystal structures reveal a highly conserved overall ligand recognition and activation mode despite diverse ligand chemical structures and affinities that range from 100 nM to ∼80 pM. Overall, the adrenaline-bound receptor structure is similar to the others, but it has substantial rearrangements in extracellular loop three and the extracellular tip of transmembrane helix 6. These structures also reveal a water-mediated hydrogen bond between two conserved tyrosines, which appears to stabilize the active state of the β2AR and related GPCRs.