Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where K. G. Veinot is active.

Publication


Featured researches published by K. G. Veinot.


Radiation Protection Dosimetry | 2011

Personal dose equivalent conversion coefficients for photons to 1 GeV

K. G. Veinot; Nolan E. Hertel

The personal dose equivalent, H(p)(d), is the quantity recommended by the International Commission on Radiation Units and Measurements (ICRU) to be used as an approximation of the protection quantity effective dose when performing personal dosemeter calibrations. The personal dose equivalent can be defined for any location and depth within the body. Typically, the location of interest is the trunk, where personal dosemeters are usually worn, and in this instance a suitable approximation is a 30 × 30 × 15 cm(3) slab-type phantom. For this condition, the personal dose equivalent is denoted as H(p,slab)(d) and the depths, d, are taken to be 0.007 cm for non-penetrating and 1 cm for penetrating radiation. In operational radiation protection a third depth, 0.3 cm, is used to approximate the dose to the lens of the eye. A number of conversion coefficients for photons are available for incident energies up to several megaelectronvolts, however, data to higher energies are limited. In this work, conversion coefficients up to 1 GeV have been calculated for H(p,slab)(10) and H(p,slab)(3) both by using the kerma approximation and tracking secondary charged particles. For H(p)(0.07), the conversion coefficients were calculated, but only to 10 MeV due to computational limitations. Additionally, conversions from air kerma to H(p,slab)(d) have been determined and are reported. The conversion coefficients were determined for discrete incident energies, but analytical fits of the coefficients over the energy range are provided. Since the inclusion of air can influence the production of secondary charged particles incident on the face of the phantom, conversion coefficients have been determined both in vacuo and with the source and slab immersed within a sphere in air. The conversion coefficients for the personal dose equivalent are compared with the appropriate protection quantity, calculated according to the recommendations of the latest International Commission on Radiological Protection (ICRP) guidance.


Radiation Protection Dosimetry | 2016

Effective Dose Rate Coefficients for Immersions in Radioactive Air and Water

Michael B. Bellamy; K. G. Veinot; Mauritius Hiller; Shaheen A. Dewji; Keith F. Eckerman; Clay E. Easterly; Nolan E. Hertel; Richard Wayne Leggett

The Oak Ridge National Laboratory Center for Radiation Protection Knowledge (CRPK) has undertaken a number of calculations in support of a revision to the United States Environmental Protection Agency (US EPA) Federal Guidance Report on external exposure to radionuclides in air, water and soil (FGR 12). Age-specific mathematical phantom calculations were performed for the conditions of submersion in radioactive air and immersion in water. Dose rate coefficients were calculated for discrete photon and electron energies and folded with emissions from 1252 radionuclides using ICRP Publication 107 decay data to determine equivalent and effective dose rate coefficients. The coefficients calculated in this work compare favorably to those reported in FGR12 as well as by other authors that employed voxel phantoms for similar exposure scenarios.


Radiation Protection Dosimetry | 2016

COMPARISON OF MONOENERGETIC PHOTON ORGAN DOSE RATE COEFFICIENTS FOR STYLIZED AND VOXEL PHANTOMS SUBMERGED IN AIR

Michael B. Bellamy; Mauritius Hiller; Shaheen A. Dewji; K. G. Veinot; Richard Wayne Leggett; Keith F. Eckerman; Clay E. Easterly; Nolan E. Hertel

As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photons in the range of 30 keV to 5 MeV. These calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.


Radiation and Environmental Biophysics | 2017

Effective dose rate coefficients for exposure to contaminated soil

K. G. Veinot; Keith F. Eckerman; Michael B. Bellamy; Mauritius Hiller; Shaheen A. Dewji; Clay E. Easterly; Nolan E. Hertel; R Manger

The Oak Ridge National Laboratory Center for Radiation Protection Knowledge has undertaken calculations related to various environmental exposure scenarios. A previous paper reported the results for submersion in radioactive air and immersion in water using age-specific mathematical phantoms. This paper presents age-specific effective dose rate coefficients derived using stylized mathematical phantoms for exposure to contaminated soils. Dose rate coefficients for photon, electron, and positrons of discrete energies were calculated and folded with emissions of 1252 radionuclides addressed in ICRP Publication 107 to determine equivalent and effective dose rate coefficients. The MCNP6 radiation transport code was used for organ dose rate calculations for photons and the contribution of electrons to skin dose rate was derived using point-kernels. Bremsstrahlung and annihilation photons of positron emission were evaluated as discrete photons. The coefficients calculated in this work compare favorably to those reported in the US Federal Guidance Report 12 as well as by other authors who employed voxel phantoms for similar exposure scenarios.


Radiation Protection Dosimetry | 2016

Reducing Statistical Uncertainties in Simulated Organ Doses of Phantoms Immersed in Water.

Mauritius Hiller; K. G. Veinot; Clay E. Easterly; Nolan E. Hertel; Keith F. Eckerman; Michael B. Bellamy

In this article, methods are addressed to reduce the computational time to compute organ-dose rate coefficients using Monte Carlo techniques. Several variance reduction techniques are compared including the reciprocity method, importance sampling, weight windows and the use of the ADVANTG software package. For low-energy photons, the runtime was reduced by a factor of 105 when using the reciprocity method for kerma computation for immersion of a phantom in contaminated water. This is particularly significant since impractically long simulation times are required to achieve reasonable statistical uncertainties in organ dose for low-energy photons in this source medium and geometry. Although the MCNP Monte Carlo code is used in this paper, the reciprocity technique can be used equally well with other Monte Carlo codes.


Radiation Protection Dosimetry | 2015

Organ and effective dose coefficients for cranial and caudal irradiation geometries: photons.

K. G. Veinot; Keith F. Eckerman; Nolan E. Hertel

With the introduction of new recommendations of the International Commission on Radiological Protection (ICRP) in Publication 103, the methodology for determining the protection quantity, effective dose, has been modified. The modifications include changes to the defined organs and tissues, the associated tissue weighting factors, radiation weighting factors and the introduction of reference sex-specific computational phantoms. Computations of equivalent doses in organs and tissues are now performed in both the male and female phantoms and the sex-averaged values used to determine the effective dose. Dose coefficients based on the ICRP 103 recommendations were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57. The coefficients were determined for the following irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), right and left lateral (RLAT and LLAT), rotational (ROT) and isotropic (ISO). In this work, the methodology of ICRP Publication 116 was used to compute dose coefficients for photon irradiation of the body with parallel beams directed upward from below the feet (caudal) and directed downward from above the head (cranial). These geometries may be encountered in the workplace from personnel standing on contaminated surfaces or volumes and from overhead sources. Calculations of organ and tissue kerma and absorbed doses for caudal and cranial exposures to photons ranging in energy from 10 keV to 10 GeV have been performed using the MCNP6.1 radiation transport code and the adult reference phantoms of ICRP Publication 110. As with calculations reported in ICRP 116, the effects of charged-particle transport are evident when compared with values obtained by using the kerma approximation. At lower energies the effective dose per particle fluence for cranial and caudal exposures is less than AP orientations while above ∼30 MeV the cranial and caudal values are greater.


Radiation Protection Dosimetry | 2013

Personal dose equivalent angular response factors for photons with energies up to 1 GeV

K. G. Veinot

When performing personal dosemeter calibrations, the dosemeters are typically irradiated while mounted on slab-type phantoms and oriented facing the source. Performance testing standards or intercomparison studies may also specify various rotational angles to test the response of the dosemeter and associated algorithm as this rotation introduces changes in the quantity of delivered dose. Correction factors for rotational effects are available, but many have not been updated in recent years and were typically calculated using the kerma approximation. The personal dose equivalent, Hp(d), is the quantity recommended by the International Commission on Radiation Units and Measurements to be used as an approximation of the protection quantity effective dose when performing personal dosemeter calibrations. The personal dose equivalent can be defined for any location and depth within the body, but typically the location of interest is the trunk where personal dosemeters are worn and in this instance a suitable approximation is a 30 cm × 30 cm × 15 cm slab-type phantom. In this work personal dose equivalent conversion coefficients for photons with energies up to 1 GeV have been calculated for depths of 0.007, 0.3 and 1.0 cm in the slab phantom for rotational angles ranging from 15° to 75°. Angular response factors have been determined by comparing the conversion coefficients for each angle and energy to those reported in an earlier work for a non-rotational (e.g. perpendicular to the phantom face) geometry. The angular response factors were determined for discrete angles, but fits of the factors are provided.


Radiation and Environmental Biophysics | 2017

Organ and effective dose rate coefficients for submersion exposure in occupational settings

K. G. Veinot; Shaheen A. Dewji; Mauritius Hiller; Keith F. Eckerman; Clay E. Easterly

External dose coefficients for environmental exposure scenarios are often computed using assumption on infinite or semi-infinite radiation sources. For example, in the case of a person standing on contaminated ground, the source is assumed to be distributed at a given depth (or between various depths) and extending outwards to an essentially infinite distance. In the case of exposure to contaminated air, the person is modeled as standing within a cloud of infinite, or semi-infinite, source distribution. However, these scenarios do not mimic common workplace environments where scatter off walls and ceilings may significantly alter the energy spectrum and dose coefficients. In this paper, dose rate coefficients were calculated using the International Commission on Radiological Protection (ICRP) reference voxel phantoms positioned in rooms of three sizes representing an office, laboratory, and warehouse. For each room size calculations using the reference phantoms were performed for photons, electrons, and positrons as the source particles to derive mono-energetic dose rate coefficients. Since the voxel phantoms lack the resolution to perform dose calculations at the sensitive depth for the skin, a mathematical phantom was developed and calculations were performed in each room size with the three source particle types. Coefficients for the noble gas radionuclides of ICRP Publication 107 (e.g., Ne, Ar, Kr, Xe, and Rn) were generated by folding the corresponding photon, electron, and positron emissions over the mono-energetic dose rate coefficients. Results indicate that the smaller room sizes have a significant impact on the dose rate per unit air concentration compared to the semi-infinite cloud case. For example, for Kr-85 the warehouse dose rate coefficient is 7% higher than the office dose rate coefficient while it is 71% higher for Xe-133.


Radiation Protection Dosimetry | 2015

An estimate of the propagated uncertainty for a dosemeter algorithm used for personnel monitoring.

K. G. Veinot

The Y-12 National Security Complex utilises thermoluminescent dosemeters (TLDs) to monitor personnel for external radiation doses. The TLD consist of four elements positioned behind various filters, and dosemeters are processed on site and input into an algorithm to determine worker dose. When processing dosemeters and determining the dose equivalent to the worker, a number of steps are involved, including TLD reader calibration, TLD element calibration, corrections for fade and background, and inherent sensitivities of the dosemeter algorithm. In order to better understand the total uncertainty in calculated doses, a series of calculations were performed using certain assumptions and measurement data. Individual contributions to the uncertainty were propagated through the process, including final dose calculations for a number of representative source types. Although the uncertainty in a workers calculated dose is not formally reported, these calculations can be used to verify the adequacy of a facilitys dosimetry process.


EPJ Web of Conferences | 2017

Organ and Effective Dose Coefficients for Cranial and Caudal Irradiation Geometries: Neutrons

K. G. Veinot; Keith F. Eckerman; Nolan E. Hertel; Mauritius Hiller

Collaboration


Dive into the K. G. Veinot's collaboration.

Top Co-Authors

Avatar

Keith F. Eckerman

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Nolan E. Hertel

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mauritius Hiller

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Clay E. Easterly

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Michael B. Bellamy

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Shaheen A. Dewji

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Richard Wayne Leggett

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

R Manger

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge