Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where K. J. Phelps is active.

Publication


Featured researches published by K. J. Phelps.


Journal of Animal Science | 2014

Effect of dietary zinc and ractopamine hydrochloride on pork chop muscle fiber type distribution, tenderness, and color characteristics

C. B. Paulk; Michael D. Tokach; Jim L. Nelssen; D. D. Burnett; M. A. Vaughn; K. J. Phelps; Steven S. Dritz; Joel M. DeRouchey; Robert D. Goodband; Jason C. Woodworth; Terry A. Houser; K. D. Haydon; J. M. Gonzalez

A total of 320 finishing pigs (PIC 327 × 1050; initially 98 kg) were used to determine the effects of adding Zn to diets containing ractopamine HCl (RAC) on muscle fiber type distribution, fresh chop color, and cooked meat characteristics. Dietary treatments were fed for approximately 35 d and consisted of a corn-soybean meal-based negative control (CON), a positive control diet with 10 mg/kg of RAC (RAC+), and the RAC+ diet plus 75, 150, or 225 mg/kg added Zn from either ZnO or Availa-Zn. Loins randomly selected from each treatment (n = 20) were evaluated using contrasts: CON vs. RAC+, interaction of Zn level × source, Zn level linear and quadratic polynomials, and Zn source. There were no Zn source effects or Zn source × level interactions throughout the study (P > 0.10). Pigs fed RAC+ had increased (P < 0.02) percentage type IIX and a tendency for increased (P = 0.10) percent type IIB muscle fibers. Increasing added Zn decreased (linear, P = 0.01) percentage type IIA and tended to increase (P = 0.09) IIX muscle fibers. On d 1, 2, 3, 4, and 5 of display, pork chops from pigs fed the RAC+ treatment had greater (P < 0.03) L* values compared to the CON. On d 0 and 3 of display, increasing added Zn tended to decrease (quadratic, P = 0.10) L* values and decreased (quadratic, P < 0.03) L* values on d 1, 2, 4, and 5. Pigs fed RAC+ had decreased (P < 0.05) a* values on d 1 and 4 of display and tended to have decreased (P < 0.10) a* values on d 0 and 2 compared to CON pork chops. Pork chops from the RAC+ treatment had a tendency for increased (P < 0.08) oxymyoglobin percentage compared to CON pork chops on d 1, 2, 4, and 5. On d 0, as dietary Zn increased in RAC+ diets, there was a decrease (linear, P < 0.01) in the formation of pork chop surface oxymyoglobin percentage. Metmyoglobin reducing ability (MRA) of pork chops on d 5 was decreased in the RAC+ group. Chops from pigs fed added Zn had increased (quadratic, P < 0.03) MRA on d 3 and 5 of the display period. There was a trend for increased (linear, P = 0.07) cooking loss with increasing Zn in RAC diets and treatments did not affect tenderness as measured by Warner-Bratzler shear force (P > 0.07). In conclusion, RAC+ diets produced chops that were lighter and less red but maintained a greater percentage of surface oxymyoglobin throughout a 5-d simulated retail display. Ractopamine reduced MRA at the end of the display period, but supplementing Zn to RAC diets restored MRA to near CON treatment levels at the end of the display period.


Journal of Animal Science | 2014

Effects of the Programmed Nutrition Beef Program on meat quality characteristics.

K. J. Phelps; J. S. Drouillard; J. Jennings; B. E. Depenbusch; C. L. Van Bibber-Krueger; K. A. Miller; M. A. Vaughn; D. D. Burnett; S. M. Ebarb; Terry A. Houser; S. E. Johnson; J. M. Gonzalez

The objective of this study was to examine the effects of alternative finishing strategies on beef steak color and cooked meat characteristics. Beef steers (n = 64 pens; 8 steers/pen) were allocated to a randomized complete block design with a 2 × 2 factorial treatment arrangement and initial body weight serving as the blocking factor. Factor 1 consisted of dietary treatment with cattle either being fed a conventional feedlot diet (CON) or a diet that included Programmed Nutrition Beef Program supplements. Cattle in the Programmed Nutrition (PN) treatments were fed in two-stages: 1) the basal diet with Programmed Nutrition Beef Receiver from d 1 to 20 and the basal diet with Programmed Nutrition Beef Finisher from d 21 to harvest. Factor 2 consisted of the inclusion (EGP+) or absence (EGP-) of an exogenous growth promoting program. Steers in the EGP+ treatments were implanted initially with Component E-S, reimplanted with Component TE-IS, and fed 400 mg · d(-1) · steer(-1) of ractopamine hydrochloride for the final 28 d before harvest. Steers were harvested on d 175 of feeding and 1 strip loin was removed from 2 carcasses selected at random from each pen for transport to Kansas State University. After 14 d of aging, loins were fabricated into 2.54-cm thick steaks for objective and trained sensory panel measurement of cooked meat characteristics and objective color measurements during 7 d retail display. There were no interactions (P > 0.10) between feeding strategy and exogenous growth promotants for all objective measures of color and cooked meat characteristics. Throughout the display period, PN steaks were darker (P = 0.02) than CON steaks, but surface percentages of oxymyoglobin and metmyoglobin and metmyoglobin reducing ability were unaffected by feeding strategy (P > 0.10). Loins and steaks from PN cattle possessed decreased moisture loss during aging and cooking (P < 0.01). Trained sensory panel evaluation of cooked meat revealed a dietary program × growth promotant interaction for myofibrillar tenderness, connective tissue amount, and overall tenderness (P = 0.01). Compared to the CON/EGP- and PN/EGP- treatments, steaks from the CON/EGP+ and PN/EGP+ treatments were evaluated by panelists as being less myofibrillar and overall tender (P < 0.05). The alternative feeding strategies presented in this study can favorably impact water-holding capacity without negatively compromising retail display discoloration.


Journal of Animal Science | 2016

Effect of extended postmortem aging and steak location on myofibrillar protein degradation and Warner-Bratzler shear force of beef M. semitendinosus steaks

K. J. Phelps; James S. Drouillard; M.B. Silva; L.D.F. Miranda; S. M. Ebarb; C. L. Van Bibber-Krueger; T.G. O'Quinn; J. M. Gonzalez

The objective of this study was to evaluate the effect of steak location and postmortem aging on cooked meat tenderness and myofibrillar protein degradation of steaks from M. semitendinosus (ST). Following harvest and a 6 d chill period, the left ST was removed from carcasses of crossbred feedlot steers ( = 60, average hot carcass weight 427 ± 24 kg). Each ST was fabricated into ten 2.54-cm thick steaks originating from the proximal to distal end of the muscle. Steaks cut adjacent to each other were paired, vacuum packaged, and randomly assigned to 7, 14, 21, 42, or 70 d of aging at 2 ± 1°C. After aging, within each steak pair, steaks were randomly assigned to Warner-Bratzler shear force or myofibrillar proteolysis analysis (calpain activity and desmin and troponin-T degradation). Muscle fiber type and size were also determined at the 2 ends of the muscle. There was no location × d of aging interaction ( = 0.25) for ST steak WBSF. Steak location affected (quadratic, < 0.01) WBSF. As steaks were fabricated from the proximal to distal end, WBSF values decreased toward the middle of the muscle and then increased toward the distal end. Activity of all calpains and myofibrillar protein proteolysis were unaffected by steak location ( > 0.13). Type I, IIA, and IIX muscle fibers were larger at the proximal end of the muscle than the distal end ( < 0.01). Increasing d of aging improved WBSF (quadratic, < 0.01) for the duration of the 70 d postmortem period. As d of aging increased, intact calpain-1 activity decreased (quadratic, < 0.01) with activity detected through 42 d. Day of aging affected autolyzed calpain-1 (linear, < 0.01) and calpain-2 activity (quadratic, < 0.01). Through d 70 of aging, the intensity of intact 55 kDa desmin band decreased (linear, < 0.01), while there was an increase (linear, < 0.01) in the degraded 38 kDa band. Similarly, d of aging increased troponin-T proteolysis, indicated by a decrease (quadratic, < 0.01) in intensity of the intact 40 kDa band and an increase (linear, < 0.01) in the 30 kDa degraded band. Intramuscular WBSF differences are not due to proteolytic activity or myofibrillar degradation and seem related to muscle fiber size. The improvement of ST steak WBSF through 70 d of aging is partly due to continued degradation of desmin and troponin-T. Calpain proteolytic analysis indicates that autolyzed calpain-1 and calpain-2 may be involved in extended postmortem myofibrillar protein proteolysis.


Journal of Animal Science | 2016

Effect of growth-promoting technologies on Longissimus lumborum muscle fiber morphometrics, collagen solubility, and cooked meat tenderness

S. M. Ebarb; James S. Drouillard; K. R. Maddock-Carlin; K. J. Phelps; M. A. Vaughn; D. D. Burnett; C. L. Van Bibber-Krueger; C. B. Paulk; David M. Grieger; J. M. Gonzalez

The objective of the study was to examine the effect of growth-promoting technologies (GP) on Longissimus lumborum steak tenderness, muscle fiber cross-sectional area (CSA), and collagen solubility. Crossbred feedlot heifers ( = 33; initial BW 464 ± 6 kg) were blocked by BW and assigned to 1 of 3 treatments: no GP (CON; = 11); implant, no zilpaterol hydrochloride (IMP; = 11); implant and zilpaterol hydrochloride (COMBO; = 11). Heifers assigned to receive an implant were administered Component TE-200 on d 0 of the study, and the COMBO group received 8.3 mg/kg DM of zilpaterol hydrochloride for the final 21 d of feeding with a 3 d withdrawal period. Following harvest, strip loins were collected and fabricated into 4 roasts and aged for 3, 14, 21, or 35 d postmortem. Fiber type was determined by immunohistochemistry. After aging, objective tenderness and collagen solubility were measured. There was a treatment × day of aging (DOA) interaction for Warner-Bratzler shear force (WBSF; < 0.01). At d 3 of aging, IMP and COMBO steaks had greater WBSF than CON steaks ( < 0.01). By d 14 of aging, the WBSF of IMP steaks was not different ( = 0.21) than CON steaks, but COMBO steaks had greater shear values than steaks of other treatments ( < 0.02). The COMBO steaks only remained tougher ( = 0.04) than the CON steaks following 35 DOA. Compared to CON muscles, IMP and COMBO type I and IIX muscle fibers were larger ( < 0.03). Treatment, DOA, or the two-way interactions did not impact measures of total and insoluble collagen ( > 0.31). Soluble collagen amount tended to be affected ( 0.06) by a treatment × DOA interaction which was due to COMBO muscle having more soluble collagen than the other 2 treatments on d 21 of aging ( < 0.02). Correlation analysis indicated that type I, IIA, and IIX fiber CSA are positively correlated with WBSF at d 3 and 14 of aging ( < 0.01), but only type IIX fibers are correlated at d 21 and 35 of aging ( < 0.03). At these time periods, total and insoluble collagen became positively correlated with WBSF ( < 0.01). This would indicate that relationship between muscle fiber CSA and WBSF decreases during postmortem aging, while the association between WBSF and collagen characteristics strengthens. The use of GP negatively impacted meat tenderness primarily through increased muscle fiber CSA and not through altering collagen solubility.


Journal of Animal Science | 2016

Feeding microalgae meal (All-G Rich; CCAP 4087/2) to beef heifers. I: Effects on longissimus lumborum steak color and palatibility.

K. J. Phelps; J. S. Drouillard; Travis G. O’Quinn; D. D. Burnett; T. L. Blackmon; J. E. Axman; C. L. Van Bibber-Krueger; J. M. Gonzalez

The objective of this study was to examine effects of 4 levels of microalgae meal (All-G Rich, CCAP 4087/2; Alltech Inc., Nicholasville, KY) supplementation to the diet of finishing heifers on longissimus lumborum (LL) steak PUFA content, beef palatability, and color stability. Crossbred heifers ( = 288; 452 ± 23 kg initial BW) were allocated to pens (36 pens and 8 heifers/pen), stratified by initial pen BW (3,612 ± 177 kg), and randomly assigned within strata to 1 of 4 treatments: 0, 50, 100, and 150 g·heifer·d of microalgae meal. After 89 d of feeding, cattle were harvested and LL were collected for determination of fatty acid composition and Warner-Bratzler shear force (WBSF), trained sensory panel evaluation, and 7-d retail color stability and lipid oxidation analyses. Feeding microalgae meal to heifers increased (quadratic, < 0.01) the content of 22:6-3 and increased (linear, < 0.01) the content of 20:5-3. Feeding increasing levels of microalgae meal did not impact total SFA or MUFA ( > 0.25) but tended ( = 0.10) to increase total PUFA in a quadratic manner ( = 0.03). Total omega-6 PUFA decreased (linear, = 0.01) and total omega-3 PUFA increased (quadratic, < 0.01) as microalgae meal level increased in the diet, which caused a decrease (quadratic, < 0.01) in the omega-6:omega-3 fatty acid ratio. Feeding microalgae meal did not affect WBSF values or sensory panel evaluation of tenderness, juiciness, or beef flavor scores ( > 0.16); however, off-flavor intensity increased with increasing concentration of microalgae meal in the diet (quadratic, < 0.01). From d 5 through 7 of retail display, steaks from heifers fed microalgae meal had a reduced a* value and oxymyoglobin surface percentage, with simultaneous increased surface metmyoglobin formation (quadratic, < 0.01). Lipid oxidation analysis indicated that at d 0 and 7 of display, as the concentration of microalgae meal increased in the diet, the level of oxidation increased (quadratic, < 0.01). Muscle fiber type percentage or size was not influenced by the inclusion of microalgae meal in diets ( > 0.19); therefore, the negative effects of microalgae on color stability were not due to fiber metabolism differences. Feeding microalgae meal to finishing heifers improves PUFA content of beef within the LL, but there are adverse effects on flavor and color stability.


Journal of Animal Science | 2017

Effects of anabolic implants and ractopamine-HCl on muscle fiber morphometrics, collagen solubility, and tenderness of beef longissimus lumborum steaks,

S. M. Ebarb; K. J. Phelps; J. S. Drouillard; K. R. Maddock-Carlin; M. A. Vaughn; D. D. Burnett; J. A. Noel; C. L. Van Bibber Krueger; C. B. Paulk; David M. Grieger; J. M. Gonzalez

The objective of this study was to examine the effects of growth-promoting technologies (GP) and postmortem aging on longissimus lumborum muscle fiber cross-sectional area (CSA), collagen solubility, and their relationship to meat tenderness. Two groups of black-hided crossbred feedlot heifers (group 1: = 33, initial BW 430 ± 7 kg; group 2: = 32, initial BW 466 ± 7 kg) were blocked by BW and assigned to 1 of 3 treatments consisting of: no implant and no ractopamine hydrochloride (CON; = 21); implant, no ractopamine hydrochloride (IMP; = 22); implant and ractopamine hydrochloride (COMBO; = 22). Heifers that received an implant were administered an implant containing 200 mg trenbolone acetate and 20 mg estradiol on d 0 of the study, and heifers in the COMBO group received 400 mg∙head∙d of ractopamine hydrochloride for 28 (Group 1) or 29 d (Group 2) at the end of 90- (Group 1) or 106-d (Group 2) feeding period. Following harvest, strip loins were collected and further fabricated into 5 roasts for postmortem aging (DOA) periods of 2, 7, 14, 21, or 35 d. After aging, Warner-Bratzler shear force (WBSF), muscle fiber CSA, and collagen solubility were measured. There was no treatment × DOA interaction for WBSF ( = 0.86), but treatment and DOA impacted WBSF ( < 0.01). Over the entire aging study, COMBO steaks had greater ( < 0.01) shear force values when compared to CON steaks. The IMP steaks tended to have decreased ( = 0.07) shear force when compared to the COMBO steaks, but did not differ ( = 0.11) from CON steaks. The IMP and COMBO treatments had increased type IIA fiber CSA when compared to CON ( < 0.01). When compared to each other, the IMP and COMBO type IIA fiber CSA did not differ ( = 0.76). Type I and IIX fiber CSA tended to be greater than CON for IMP and COMBO treatments ( < 0.10). There was no treatment × DOA interaction for all collagen measures ( > 0.33). Collagen amounts were not impacted by GP treatment ( > 0.72), but DOA increased the concentration of soluble collagen ( = 0.04). Fiber CSA of all fiber types were positively correlated ( < 0.05; = 0.21 to 0.28) with WBSF only on d 2 of aging, while soluble collagen amount tended to negatively correlate with WBSF on d 7 and 14 of aging ( < 0.10; = -0.24 and -0.23, respectively). Administration of GP during heifer finishing resulted in greater steak WBSF over 35 d of aging, which was not due to collagen characteristics and only minimally affected by fiber CSA.


Animal Biotechnology | 2016

Effects of Added Zinc on Skeletal Muscle Morphometrics and Gene Expression of Finishing Pigs Fed Ractopamine-HCL

D. D. Burnett; C. B. Paulk; Tokach; Jim L. Nelssen; M. A. Vaughn; K. J. Phelps; Steven S. Dritz; Joel M. DeRouchey; Robert D. Goodband; K. D. Haydon; J. M. Gonzalez

ABSTRACT Finishing pigs (n = 320) were used in a 35-day study to determine the effects of ractopamine-HCl (RAC) and supplemental Zinc (Zn) level on loin eye area (LEA) and gene expression. Pens were randomly allotted to the following treatments for the final 35 days on feed: a corn-soybean meal diet (CON), a diet with 10 ppm RAC (RAC+), and RAC diet plus added Zn at 75, 150, or 225 ppm. Sixteen pigs per treatment were randomly selected for collection of serial muscle biopsies and carcass data on day 0, 8, 18, and 32 of the treatment phase. Compared to CON carcasses, RAC+ carcasses had 12.6% larger (P = 0.03) LEA. Carcasses from RAC diets with added Zn had a tendency for increased (quadratic, P < 0.10) LEA compared to the RAC+ carcasses. Compared to RAC+ pigs, relative expression of IGF1 decreased with increasing levels of Zn on day 8 and 18 of treatment, but expression levels were similar on day 32 due to Zn treatments increasing in expression while the RAC+ treatment decreased (Zn quadratic × day quadratic, P = 0.04). A similar trend was detected for the expression of β1-receptor where expression levels in the RAC+ pigs were greater than Zn supplemented pigs on day 8 and 18 of the experiment, but the magnitude of difference between the treatments was reduced on day 32 due to a decrease in expression by RAC+ pigs and an increase in expression by the Zn pigs (Zn quadratic × day quadratic, P = 0.01). The ability of Zn to prolong the expression of these two genes may be responsible for the tendency of Zn to increase LEA in RAC supplemented pigs.


Journal of Animal Science | 2017

Effect of Brahman genetics on myofibrillar protein degradation, collagen crosslinking, and tenderness of the longissimus lumborum

K. J. Phelps; D.D. Johnson; Mauricio A. Elzo; C. B. Paulk; J. M. Gonzalez

The objective of this study was to examine the effect of percent Brahman genetics on Warner-Bratzler shear force (WBSF), desmin and troponin-T (TnT) degradation, hydroxylysyl pyridinoline (HP) crosslink content, and perimysial collagen melting temperature. Steers ( = 131) produced in 2012 and 2013 were harvested at 1.27 cm of visual s.c. back fat thickness. Steers were divided into 4 genetic categories consisting of steers that contained 6/32 or less Brahman genetics, 12/32 Brahman genetics, 14/32 to 18/32 Brahman genetics, and 23/32 to 32/32 Brahman genetics. Twenty-four hours after harvest, a 7.62-cm piece of the longissimus lumborum beginning at the 13th rib was collected and aged for 14 d. Following aging, three 2.54-cm steaks were cut for WBSF, trained sensory panel, and laboratory analyses. Laboratory analyses steaks were used to determine protein degradation, HP crosslink analysis, and perimysial collagen melting temperature. Data were analyzed using a polynomial regression for unequally spaced treatments. As the percent Brahman genetics increased, WBSF increased (linear, = 0.01). As percent Brahman genetics increased, tenderness score decreased (less tender) and connective tissue score increased (more connective tissue; linear, = 0.01). As the percentage of Brahman genetics increased, the amount of degraded desmin (38 kDa) and TnT (34 and 30 kDa) decreased (linear, < 0.03) whereas the amount of immunoreactive 36 kDa TnT increased (linear, = 0.04). Percent Brahman genetics had no effect ( = 0.14) on HP crosslink content but did tend to increase ( = 0.07) perimysial collagen melting temperature as the percent Brahman increased. The percentage of Brahman genetic influence was positively correlated to WBSF ( = 0.25), 36 kDa immunoreactive TnT ( = 0.26), and perimysial collagen melting temperature ( = 0.25, = 0.01). Sensory panel tenderness ( = -0.44), juiciness ( = -0.26), and connective tissue scores ( = -0.63); 38 kDa degraded desmin ( = -0.34), 34 ( = -0.36) and 30 kDa degraded TnT ( = -0.29); and HP collagen crosslinks ( = -0.20) were negatively correlated to percent Brahman genetic influence ( < 0.03). Increasing Brahman genetic influence in steers negatively affects tenderness, partially through a reduction in degradation of desmin and TnT. Although HP collagen crosslinks are unaffected by Brahman genetics, a tendency for increased perimysium melting temperature indicates that other collagen-stabilizing crosslinks may be affected.


Journal of Animal Science | 2016

Use of electromyography to detect muscle exhaustion in finishing barrows fed ractopamine HCl

J. A. Noel; Ryan M. Broxterman; G. M. McCoy; Jesse C. Craig; K. J. Phelps; D. D. Burnett; M. A. Vaughn; Thomas J. Barstow; T.G. O'Quinn; Jason C. Woodworth; Joel M. DeRouchey; Timothy G. Rozell; J. M. Gonzalez

The objectives of this study were to determine the effects of dietary ractopamine HCl (RAC) on muscle fiber characteristics and electromyography (EMG) measures of finishing barrow exhaustion when barrows were subjected to increased levels of activity. Barrows ( = 34; 92 ± 2 kg initial BW) were assigned to 1 of 2 treatments: a conventional swine finishing diet containing 0 mg/kg ractopamine HCl (CON) or a diet formulated to meet the requirements of finishing barrows fed 10 mg/kg RAC (RAC+). After 32 d on feed, barrows were individually moved around a track at 0.79 m/s until subjectively exhausted. Wireless EMG sensors were affixed to the deltoideus (DT), triceps brachii lateral head (TLH), tensor fasciae latae (TFL), and semitendinosus (ST) muscles to measure median power frequency (MdPF) and root mean square (RMS) as indicators of action potential conduction velocity and muscle fiber recruitment, respectively. After harvest, samples of each muscle were collected for fiber type, succinate dehydrogenase (SDH), and capillary density analysis. Speed was not different ( = 0.82) between treatments, but RAC+ barrows reached subjective exhaustion earlier and covered less distance than CON barrows ( < 0.01). There were no treatment × muscle interactions or treatment effects for end-point MdPF values ( > 0.29). There was a treatment × muscle interaction ( = 0.04) for end-point RMS values. The RAC diet did not change end-point RMS values in the DT or TLH ( > 0.37); however, the diet tended to decrease and increase end-point RMS in the ST and TFL, respectively ( < 0.07). There were no treatment × muscle interactions for fiber type, SDH, or capillary density measures ( > 0.10). Muscles of RAC+ barrows tended to have less type I fibers and more capillaries per fiber ( < 0.07). Type I and IIA fibers of RAC+ barrows were larger ( < 0.07). Compared with all other muscles, the ST had more ( < 0.01) type IIB fibers and larger type I, IIA, and IIX fibers ( < 0.01). Type I, IIA, and IIX fibers of the ST also contained less SDH compared with the other muscles ( < 0.01). Barrows fed a RAC diet had increased time to subjective exhaustion due to loss of active muscle fibers in the ST, possibly due to fibers being larger and less oxidative in metabolism. Size increases in type I and IIA fibers with no change in oxidative capacity could also contribute to early exhaustion of RAC+ barrows. Overall, EMG technology can measure real-time muscle fiber loss to help explain subjective exhaustion in barrows.


Meat Science | 2015

Effect of the Programmed Nutrition Beef Program on moisture retention of cooked ground beef patties and enhanced strip loins

K. J. Phelps; James S. Drouillard; J. Jennings; B. E. Depenbusch; M. A. Vaughn; D. D. Burnett; S. M. Ebarb; G. J. Dietz; J. D. Heitschmidt; J. A. Noel; Terry A. Houser; J. M. Gonzalez

This study evaluated the influence of the Programmed Nutrition Beef Program and exogenous growth promotants (ExGP) on water holding capacity characteristics of enhanced beef strip loins. Sixty, frozen strip loins, arranged in a 2×2 factorial treatment arrangement with dietary program serving as the first factor and use of ExGP as the second factor, were thawed, injected with an enhancement solution, and stored for 7days. Loins from ExGP cattle possessed the ability to bind more (P<0.05) water before pumping and bind less (P<0.05) water after pumping and storage. Loin pH across treatments was similar (P>0.10) before injection, but increased post-injection and after storage (P<0.01). Treatments did not affect loin purge loss, steak cook loss, and expressible moisture (P>0.10). The Programmed Nutrition Beef Program and use of ExGPs minimally impacted water holding capacity of enhanced frozen/thawed beef strip loins.

Collaboration


Dive into the K. J. Phelps's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. D. Burnett

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

M. A. Vaughn

Kansas State University

View shared research outputs
Top Co-Authors

Avatar

S. M. Ebarb

Kansas State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. B. Paulk

Kansas State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. A. Miller

Kansas State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge