Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where K. John McLaughlin is active.

Publication


Featured researches published by K. John McLaughlin.


EMBO Reports | 2004

Oct4 is required for primordial germ cell survival

James Kehler; Elena Tolkunova; Birgit Koschorz; Maurizio Pesce; Luca Gentile; Michele Boiani; Hilda Lomelí; Andras Nagy; K. John McLaughlin; Hans R. Schöler; Alexey Tomilin

Previous studies have shown that Oct4 has an essential role in maintaining pluripotency of cells of the inner cell mass (ICM) and embryonic stem cells. However, Oct4 null homozygous embryos die around the time of implantation, thus precluding further analysis of gene function during development. We have used the conditional Cre/loxP gene targeting strategy to assess Oct4 function in primordial germ cells (PGCs). Loss of Oct4 function leads to apoptosis of PGCs rather than to differentiation into a trophectodermal lineage, as has been described for Oct4‐deficient ICM cells. These new results suggest a previously unknown function of Oct4 in maintaining viability of mammalian germline.


The EMBO Journal | 2003

Pluripotency deficit in clones overcome by clone–clone aggregation: epigenetic complementation?

Michele Boiani; Sigrid Eckardt; N. Adrian Leu; Hans R. Schöler; K. John McLaughlin

Abnormal gene expression patterns in somatic cell clones and their attrition in utero are commonly considered a consequence of errors in nuclear reprogramming. We observe that mouse clone blastocysts have less than half the normal cell number, and that higher cell number correlates with correct expression of Oct4, a gene essential for peri‐implantation development and embryonic pluripotency. To increase the cell number, we aggregated genetically identical clones at the 4‐cell stage. Clone–clone aggregates did not form more blastocysts, but the majority expressed Oct4 normally and had higher rates of fetal and postnatal development. Fertilized blastocysts with low cell numbers, induced by removal of two blastomeres at the 4‐cell stage, did not exhibit abnormal Oct4 expression, indicating that improved gene expression and post‐implantation development of clone–clone aggregates is not a consequence of increased cell number. Rather, we propose that complementation of non‐cell‐autonomous defects of genetically identical, but epigenetically different, embryos results in improved gene expression in clone–clone aggregates.


Journal of Cell Biology | 2006

Mouse SYCP2 is required for synaptonemal complex assembly and chromosomal synapsis during male meiosis

Fang Yang; Rabindranath De La Fuente; N. Adrian Leu; Claudia Baumann; K. John McLaughlin; P. Jeremy Wang

During meiosis, the arrangement of homologous chromosomes is tightly regulated by the synaptonemal complex (SC). Each SC consists of two axial/lateral elements (AEs/LEs), and numerous transverse filaments. SC protein 2 (SYCP2) and SYCP3 are integral components of AEs/LEs in mammals. We find that SYCP2 forms heterodimers with SYCP3 both in vitro and in vivo. An evolutionarily conserved coiled coil domain in SYCP2 is required for binding to SYCP3. We generated a mutant Sycp2 allele in mice that lacks the coiled coil domain. The fertility of homozygous Sycp2 mutant mice is sexually dimorphic; males are sterile because of a block in meiosis, whereas females are subfertile with sharply reduced litter size. Sycp2 mutant spermatocytes exhibit failure in the formation of AEs and chromosomal synapsis. Strikingly, the mutant SYCP2 protein localizes to axial chromosomal cores in both spermatocytes and fetal oocytes, but SYCP3 does not, demonstrating that SYCP2 is a primary determinant of AEs/LEs and, thus, is required for the incorporation of SYCP3 into SCs.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Mouse MOV10L1 associates with Piwi proteins and is an essential component of the Piwi-interacting RNA (piRNA) pathway

Ke Zheng; Jordi Xiol; Michael Reuter; Sigrid Eckardt; N. Adrian Leu; K. John McLaughlin; Alexander Stark; Ravi Sachidanandam; Ramesh S. Pillai; Peijing Jeremy Wang

Piwi-interacting RNAs (piRNAs) are essential for silencing of transposable elements in the germline, but their biogenesis is poorly understood. Here we demonstrate that MOV10L1, a germ cell–specific putative RNA helicase, is associated with Piwi proteins. Genetic disruption of the MOV10L1 RNA helicase domain in mice renders both MILI and MIWI2 devoid of piRNAs. Absence of a functional piRNA pathway in Mov10l1 mutant testes causes loss of DNA methylation and subsequent derepression of retrotransposons in germ cells. The Mov10l1 mutant males are sterile owing to complete meiotic arrest. This mouse mutant expresses Piwi proteins but lacks piRNAs, suggesting that MOV10L1 is required for piRNA biogenesis and/or loading to Piwi proteins.


Biology of Reproduction | 2004

Pluripotent Lineage Definition in Bovine Embryos by Oct4 Transcript Localization

Satoshi Kurosaka; Sigrid Eckardt; K. John McLaughlin

Abstract The POU-domain transcription factor Pou5f1 (Oct4) is restricted to pluripotent embryonic cells and the germ line of the mouse and is required for the maintenance of pluripotency of cells within the inner cell mass of the mouse blastocyst. Despite highly conserved genomic organization and regulatory regions between the mouse Oct4 gene and its bovine orthologue, bovine Oct4 protein is not restricted to the inner cell mass of blastocyst-stage embryos, suggesting that Oct4 may not be a key regulator of pluripotency in the bovine. We analyze the temporal and spatial distribution of Oct4 transcript in bovine oocytes and preimplantation-stage embryos, and in contrast to protein distribution, we find strong conservation between bovine and mouse. Oct4 transcript is present at low levels in the bovine oocyte. Similar to mouse, bovine Oct4 transcription begins one to two cell cycles after zygotic genome activation, followed by a sharp increase in transcription subsequent to compaction. Oct4 transcript is ubiquitously present in all cells of embryos at the morula stage; however, in Day 7 bovine blastocysts, Oct4 signal is not visible in the trophectoderm by in situ hybridization, indicating that transcriptional downregulation of Oct4 on differentiation is similar to that observed in mouse and other mammals. These results indicate that in contrast to protein distribution, regulation of Oct4 transcription is conserved between mammalian species.


Molecular and Cellular Biology | 2007

Developmental changes in histone macroH2A1-mediated gene regulation.

Lakshmi N. Changolkar; Carl Costanzi; N. Adrian Leu; Dannee Chen; K. John McLaughlin; John R. Pehrson

ABSTRACT macroH2A histone variants have been implicated to function in gene silencing by several studies, including ones showing a preferential association of macroH2A on the inactive X chromosome. To examine macroH2A function in vivo, we knocked out macroH2A1. macroH2A1 knockout mice are viable and fertile. A broad screen of liver gene expression showed no evidence of defects in X inactivation but did identify genes that have increased expression levels in macroH2A1 knockouts. macroH2A1-containing nucleosomes are enriched on the coding and/or upstream regions of these genes, suggesting that their increased expression levels are a direct effect of the absence of macroH2A1. The concentrations of macroH2A1 nucleosomes on these genes are low in the livers of newborn mice, and the macroH2A1 knockout had little effect on the expression levels of these genes in newborn liver. Our results indicate that an increase in liver macroH2A1 during the transition from newborn to young-adult status contributes to a decrease in the expression levels of these genes. These genes cluster in the area of lipid metabolism, and we observed metabolic effects in macroH2A1 knockouts. Our results indicate that the function of macroH2A1 histones is not restricted to gene silencing but also involves fine tuning the expression of specific genes.


Genes & Development | 2008

Meiotic failure in male mice lacking an X-linked factor

Fang Yang; Katarina Gell; Godfried W. van der Heijden; Sigrid Eckardt; N. Adrian Leu; David C. Page; Ricardo Benavente; Chengtao Her; Christer Höög; K. John McLaughlin; Peijing Jeremy Wang

Meiotic silencing of sex chromosomes may cause their depletion of meiosis-specific genes during evolution. Here, we challenge this hypothesis by reporting the identification of TEX11 as the first X-encoded meiosis-specific factor in mice. TEX11 forms discrete foci on synapsed regions of meiotic chromosomes and appears to be a novel constituent of meiotic nodules involved in recombination. Loss of TEX11 function causes chromosomal asynapsis and reduced crossover formation, leading to elimination of spermatocytes, respectively, at the pachytene and anaphase I stages. Specifically, TEX11-deficient spermatocytes with asynapsed autosomes undergo apoptosis at the pachytene stage, while those with only asynapsed sex chromosomes progress. However, cells that survive the pachytene stage display chromosome nondisjunction at the first meiotic division, resulting in cell death and male infertility. TEX11 interacts with SYCP2, which is an integral component of the synaptonemal complex lateral elements. Thus, TEX11 promotes initiation and/or maintenance of synapsis and formation of crossovers, and may provide a physical link between these two meiotic processes.


Journal of Cell Biology | 2008

Mouse TEX15 is essential for DNA double-strand break repair and chromosomal synapsis during male meiosis

Fang Yang; Sigrid Eckardt; N. Adrian Leu; K. John McLaughlin; Peijing Jeremy Wang

During meiosis, homologous chromosomes undergo synapsis and recombination. We identify TEX15 as a novel protein that is required for chromosomal synapsis and meiotic recombination. Loss of TEX15 function in mice causes early meiotic arrest in males but not in females. Specifically, TEX15-deficient spermatocytes exhibit a failure in chromosomal synapsis. In mutant spermatocytes, DNA double-strand breaks (DSBs) are formed, but localization of the recombination proteins RAD51 and DMC1 to meiotic chromosomes is severely impaired. Based on these data, we propose that TEX15 regulates the loading of DNA repair proteins onto sites of DSBs and, thus, its absence causes a failure in meiotic recombination.


Journal of Biological Chemistry | 2010

Phosphatidylinositol 3-kinase (PI3K) signaling via glycogen synthase kinase-3 (Gsk-3) regulates DNA methylation of imprinted loci

Anthony P. Popkie; Leigh C. Zeidner; Ashley M. Albrecht; Anthony D'Ippolito; Sigrid Eckardt; David E. Newsom; Joanna Groden; Bradley W. Doble; Bruce J. Aronow; K. John McLaughlin; Peter S. White; Christopher J. Phiel

Glycogen synthase kinase-3 (Gsk-3) isoforms, Gsk-3α and Gsk-3β, are constitutively active, largely inhibitory kinases involved in signal transduction. Underscoring their biological significance, altered Gsk-3 activity has been implicated in diabetes, Alzheimer disease, schizophrenia, and bipolar disorder. Here, we demonstrate that deletion of both Gsk-3α and Gsk-3β in mouse embryonic stem cells results in reduced expression of the de novo DNA methyltransferase Dnmt3a2, causing misexpression of the imprinted genes Igf2, H19, and Igf2r and hypomethylation of their corresponding imprinted control regions. Treatment of wild-type embryonic stem cells and neural stem cells with the Gsk-3 inhibitor, lithium, phenocopies the DNA hypomethylation at these imprinted loci. We show that inhibition of Gsk-3 by phosphatidylinositol 3-kinase (PI3K)-mediated activation of Akt also results in reduced DNA methylation at these imprinted loci. Finally, we find that N-Myc is a potent Gsk-3-dependent regulator of Dnmt3a2 expression. In summary, we have identified a signal transduction pathway that is capable of altering the DNA methylation of imprinted loci.


Molecular and Cellular Biology | 2009

Mammalian casein kinase 1α and its leishmanial ortholog regulate stability of IFNAR1 and type I interferon signaling

Jianghuai Liu; Lucas P. Carvalho; Sabyasachi Bhattacharya; Christopher J. Carbone; K. G. Suresh Kumar; N. Adrian Leu; Peter M. Yau; Robert G.K. Donald; Mitchell J. Weiss; Darren P. Baker; K. John McLaughlin; Phillip Scott; Serge Y. Fuchs

ABSTRACT Phosphorylation of the degron of the IFNAR1 chain of the type I interferon (IFN) receptor triggers ubiquitination and degradation of this receptor and, therefore, plays a crucial role in negative regulation of IFN-α/β signaling. Besides the IFN-stimulated and Jak activity-dependent pathways, a basal ligand-independent phosphorylation of IFNAR1 has been described and implicated in downregulating IFNAR1 in response to virus-induced endoplasmic reticulum (ER) stress. Here we report purification and characterization of casein kinase 1α (CK1α) as a bona fide major IFNAR1 kinase that confers basal turnover of IFNAR1 and cooperates with ER stress stimuli to mediate phosphorylation-dependent degradation of IFNAR1. Activity of CK1α was required for phosphorylation and downregulation of IFNAR1 in response to ER stress and viral infection. While many forms of CK1 were capable of phosphorylating IFNAR1 in vitro, human CK1α and L-CK1 produced by the protozoan Leishmania major were also capable of increasing IFNAR1 degron phosphorylation in cells. Expression of leishmania CK1 in mammalian cells stimulated the phosphorylation-dependent downregulation of IFNAR1 and attenuated its signaling. Infection of mammalian cells with L. major modestly decreased IFNAR1 levels and attenuated cellular responses to IFN-α in vitro. We propose a role for mammalian and parasite CK1 enzymes in regulating IFNAR1 stability and type I IFN signaling.

Collaboration


Dive into the K. John McLaughlin's collaboration.

Top Co-Authors

Avatar

Sigrid Eckardt

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

N. Adrian Leu

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satoshi Kurosaka

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fang Yang

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satoshi Kurosaka

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge