K.K. Tummel
University of California, Irvine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by K.K. Tummel.
Physics of Plasmas | 2016
Zhenyu Wang; Yu Lin; Xueyi Wang; K.K. Tummel; Liu Chen
The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio mi/me. In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic mi/me. The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location where k→·B→=0, consistent with previous analytical and simulation studies. Here, B→ is the equilibrium magnetic field and k→ is the wavevector perpendicular to th...
Physics of Plasmas | 2014
K.K. Tummel; Li-Juan Chen; Z. H. Wang; Xueyi Wang; Yuzheng Lin
A kinetic electrostatic eigenvalue equation for the lower-hybrid drift instability (LHDI) in a thin Harris current sheet with a guide field is derived based on the gyrokinetic electron and fully kinetic ion(GeFi) description. Three-dimensional nonlocal analyses are carried out to investigate the influence of a guide field on the stabilization of the LHDI by finite parallel wavenumber, k∥. Detailed stability properties are first analyzed locally, and then as a nonlocal eigenvalue problem. Our results indicate that at large equilibrium drift velocities, the LHDI is further destabilized by finite k∥ in the short-wavelength domain. This is demonstrated in a local stability analysis and confirmed by the peak in the eigenfunction amplitude. We find the most unstable modes localized at the current sheet edges, and our results agree well with simulations employing the GeFi code developed by Lin et al. [Plasma Phys. Controlled Fusion 47, 657 (2005); Plasma Phys. Controlled Fusion 53, 054013 (2011)].
Bulletin of the American Physical Society | 2017
U. Shumlak; B.A. Nelson; E.L. Claveau; E.G. Forbes; R.P. Golingo; A.D. Stepanov; T.R. Weber; Y. Zhang; H.S. McLean; D.P. Higginson; Andrea Schmidt; K.K. Tummel
Bulletin of the American Physical Society | 2017
A.D. Stepanov; U. Shumlak; B.A. Nelson; E.L. Claveau; E.G. Forbes; R.P. Golingo; T.R. Weber; Y. Zhang; H.S. McLean; D.P. Higginson; Andrea Schmidt; K.K. Tummel
Bulletin of the American Physical Society | 2017
R.P. Golingo; U. Shumlak; B.A. Nelson; E.L. Claveau; E.G. Forbes; A.D. Stepanov; T.R. Weber; Y. Zhang; H.S. McLean; K.K. Tummel; D.P. Higginson; Andrea Schmidt
Bulletin of the American Physical Society | 2017
T.R. Weber; U. Shumlak; B.A. Nelson; E.L. Claveau; E.G. Forbes; R.P. Golingo; A.D. Stepanov; Y. Zhang; H.S. McLean; D.P. Higginson; Andrea Schmidt; K.K. Tummel
Bulletin of the American Physical Society | 2017
B.A. Nelson; U. Shumlak; E.L. Claveau; E.G. Forbes; R.P. Golingo; A.D. Stepanov; T.R. Weber; Y. Zhang; H.S. McLean; D.P. Higginson; Andrea Schmidt; K.K. Tummel
Bulletin of the American Physical Society | 2016
T.R. Weber; U. Shumlak; B.A. Nelson; R.P. Golingo; E.L. Claveau; H.S. McLean; K.K. Tummel; D.P. Higginson; Andrea Schmidt
Bulletin of the American Physical Society | 2016
K.K. Tummel; D.P. Higginson; Andrea Schmidt; Anthony Link; H.S. McLean; U. Shumlak; B.A. Nelson; R.P. Golingo; Elliot Claveau
Bulletin of the American Physical Society | 2016
H.S. McLean; D.P. Higginson; Andrea Schmidt; K.K. Tummel; U. Shumlak; B.A. Nelson; E.L. Claveau; E.G. Forbes; R.P. Golingo; A.D. Stepanov; T.R Weber; Y. Zhang