Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where K. Kasahara is active.

Publication


Featured researches published by K. Kasahara.


The Astrophysical Journal | 2009

Multi-TeV Gamma-Ray Observation from the Crab Nebula Using the Tibet-III Air Shower Array Finely Tuned by the Cosmic Ray Moon's Shadow

M. Amenomori; X. J. Bi; D. Chen; S. W. Cui; Danzengluobu; L. K. Ding; X. H. Ding; C. Fan; C. F. Feng; Zhaoyang Feng; Z. Y. Feng; X. Y. Gao; Q. X. Geng; H. W. Guo; H. H. He; M. He; K. Hibino; N. Hotta; Haibing Hu; H. B. Hu; J. Huang; Q. Huang; H. Y. Jia; F. Kajino; K. Kasahara; Y. Katayose; C. Kato; K. Kawata; Labaciren; G. M. Le

The Tibet-III air shower array, consisting of 533 scintillation detectors, has been operating successfully at Yangbajing in Tibet, China since 1999. Using the data set collected by this array from 1999 November through 2005 November, we obtained the energy spectrum of γ-rays from the Crab Nebula, expressed by a power law as (dJ/dE) = (2.09 ± 0.32) × 10–12(E/3 TeV)–2.96±0.14 cm–2 s–1 TeV–1 in the energy range of 1.7-40 TeV. This result is consistent with other independent γ-ray observations by imaging air Cherenkov telescopes. In this paper, we carefully checked and tuned the performance of the Tibet-III array using data on the Moons shadow in comparison with a detailed Monte Carlo (MC) simulation. The shadow is shifted to the west of the Moons apparent position as an effect of the geomagnetic field, although the extent of this displacement depends on the primary energy of positively charged cosmic rays. This finding enables us to estimate the systematic error in determining the primary energy from its shower size. This error is estimated to be less than ±12% in our experiment. This energy scale estimation is the first attempt among cosmic ray experiments at ground level. The systematic pointing error is also estimated to be smaller than 0011. The deficit rate and the position of the Moons shadow are shown to be very stable within a statistical error of ±6% year by year. This guarantees the long-term stability of pointlike source observation with the Tibet-III array. These systematic errors are adequately taken into account in our study of the Crab Nebula.


The Astrophysical Journal | 2010

On temporal variations of the multi-tev cosmic ray anisotropy using the tibet iii air shower array

M. Amenomori; X. J. Bi; D. Chen; S. W. Cui; Danzengluobu; L. K. Ding; X. H. Ding; C. Fan; C. F. Feng; Zhaoyang Feng; Z. Y. Feng; X. Y. Gao; Q. X. Geng; Q. B. Gou; H. W. Guo; H. H. He; M. He; K. Hibino; N. Hotta; Haibing Hu; H. B. Hu; J. Huang; Q. Huang; H. Y. Jia; L. Jiang; F. Kajino; K. Kasahara; Y. Katayose; C. Kato; K. Kawata

We analyze the large-scale two-dimensional sidereal anisotropy of multi-TeV cosmic rays (CRs) by the Tibet Air Shower Array, with the data taken from 1999 November to 2008 December. To explore temporal variations of the anisotropy, the data set is divided into nine intervals, each with a time span of about one year. The sidereal anisotropy of magnitude, about 0.1%, appears fairly stable from year to year over the entire observation period of nine years. This indicates that the anisotropy of TeV Galactic CRs remains insensitive to solar activities since the observation period covers more than half of the 23rd solar cycle.


The Astrophysical Journal | 2010

Observation of TeV gamma rays from the fermi bright galactic sources with the tibet air shower array

M. Amenomori; X. J. Bi; D. Chen; S. W. Cui; Danzengluobu; L. K. Ding; X. H. Ding; C. Fan; C. F. Feng; Zhaoyang Feng; Z. Y. Feng; X. Y. Gao; Q. X. Geng; Q. B. Gou; H. W. Guo; H. H. He; M. He; K. Hibino; N. Hotta; Haibing Hu; H. B. Hu; J. Huang; Q. Huang; H. Y. Jia; L. Jiang; F. Kajino; K. Kasahara; Y. Katayose; C. Kato; K. Kawata

Using the Tibet-III air shower array, we search for TeV γ-rays from 27 potential Galactic sources in the early list of bright sources obtained by the Fermi Large Area Telescope at energies above 100 MeV. Among them, we observe seven sources instead of the expected 0.61 sources at a significance of 2σ or more excess. The chance probability from Poisson statistics would be estimated to be 3.8 × 10–6. If the excess distribution observed by the Tibet-III array has a density gradient toward the Galactic plane, the expected number of sources may be enhanced in chance association. Then, the chance probability rises slightly, to 1.2 × 10–5, based on a simple Monte Carlo simulation. These low chance probabilities clearly show that the Fermi bright Galactic sources have statistically significant correlations with TeV γ-ray excesses. We also find that all seven sources are associated with pulsars, and six of them are coincident with sources detected by the Milagro experiment at a significance of 3σ or more at the representative energy of 35 TeV. The significance maps observed by the Tibet-III air shower array around the Fermi sources, which are coincident with the Milagro ≥3σ sources, are consistent with the Milagro observations. This is the first result of the northern sky survey of the Fermi bright Galactic sources in the TeV region.


The Astrophysical Journal | 2008

New Estimation of the Spectral Index of High-Energy Cosmic Rays as Determined by the Compton-Getting Anisotropy

M. Amenomori; X. J. Bi; D. Chen; S. W. Cui; Danzengluobu; L. K. Ding; X. H. Ding; C. Fan; C. F. Feng; Zhaoyang Feng; Z. Y. Feng; X. Y. Gao; Q. X. Geng; H. W. Guo; H. H. He; M. He; K. Hibino; N. Hotta; Haibing Hu; H. B. Hu; J. Huang; Q. Huang; H. Y. Jia; F. Kajino; K. Kasahara; Y. Katayose; C. Kato; K. Kawata; Labaciren; G. M. Le

The amplitude of the Compton-Getting (CG) anisotropy contains the power-law index of the cosmic-ray energy spectrum. Based on this relation and using the Tibet air shower array data, we measure the cosmic-ray spectral index to be –3.03 ± 0.55stat ± <0.62syst between 6 and 40 TeV, consistent with –2.7 from direct energy spectrum measurements. Potentially, this CG anisotropy analysis can be utilized to confirm the astrophysical origin of the knee against models for nonstandard hadronic interactions in the atmosphere.


Advances in Space Research | 2008

The energy spectrum of all-particle cosmic rays around the knee region observed with the Tibet-III air-shower array

M. Amenomori; S. Ayabe; X. J. Bi; D. Chen; S. W. Cui; Danzengluobu; L. K. Ding; X. H. Ding; C. F. Feng; Zhaoyang Feng; Z. Y. Feng; X. Y. Gao; Q. X. Geng; H. W. Guo; H. H. He; M. He; K. Hibino; N. Hotta; Haibing Hu; H. B. Hu; J. Huang; Q. Huang; H. Y. Jia; F. Kajino; K. Kasahara; Y. Katayose; C. Kato; K. Kawata; Labaciren; G. M. Le

We have already reported the first result on the all-particle spectrum around the knee region based on data from 2000 November to 2001 October observed by the Tibet-III air-shower array. In this paper, we present an updated result using data set collected in the period from 2000 November through 2004 October in a wide range over 3 decades between 1014 and 1017 eV, in which the position of the knee is clearly seen at around 4 PeV. The spectral index is 2.68 ± 0.02(stat.) below 1 PeV, while it is 3.12 ± 0.01(stat.) above 4 PeV in the case of QGSJET+HD model, and various systematic errors should be carefully done in the very near future.


9th Annual International Astrophysics Conference on Pickup Ions Throughout the Heliosphere and Beyond: Dedicated to the Memory of Sir W. Ian Axford January 2, 1933 - March 13, 2010 | 2010

Heliospheric signatures seen in the sidereal anisotropy of high-energy galactic cosmic ray intensity

M. Amenomori; X. J. Bi; D. Chen; S. W. Cui; Danzengluobu; L. K. Ding; X. H. Ding; C. Fan; C. F. Feng; Zhaoyang Feng; Z. Y. Feng; X. Y. Gao; Q. X. Geng; Q. B. Gou; H. W. Guo; H. H. He; M. He; K. Hibino; N. Hotta; Haibing Hu; H. B. Hu; J. Huang; Q. Huang; H. Y. Jia; L. Jiang; F. Kajino; K. Kasahara; Y. Katayose; C. Kato; K. Kawata

Mapping the global heliosphere by detecting energetic neutral atoms (ENAs), IBEX derived the semi‐direct information on the structure of the large‐scale magnetic field surrounding the heliosphere. Multi‐TeV galactic cosmic rays (GCRs) also sense the global structure of the magnetic field within the whole heliosphere as well as the field surrounding the heliosphere, and can provide an additional tool to explore the global structure of these fields. We analyze, in this context, the multi‐TeV GCR intensity observed with the Tibet Air Shower (AS) experiment, which clearly shows a midscale component structure observed as the excess intensity along Gurnett’s HDP (Hydrogen Deflection Plane), as well as the global component structure. We find that the amplitude of the midscale component is only weakly dependent on GCR energy, while its angular extension along the HDP plane monotonously decreases with increasing energy. On the basis of these results, we discuss the possible origin of the midscale anisotropy.


Journal of the Physical Society of Japan | 2009

Chemical composition of cosmic rays around the knee observed by the Tibet air-shower-core detector

M. Amenomori; X. J. Bi; D. Chen; S. W. Cui; Danzengluobu; L. K. Ding; X. H. Ding; C. Fan; C. F. Feng; Zhaoyang Feng; Z. Y. Feng; X. Y. Gao; Q. X. Geng; H. W. Guo; H. H. He; M. He; K. Hibino; N. Hotta; Haibing Hu; H. B. Hu; J. Huang; Q. Huang; H. Y. Jia; F. Kajino; K. Kasahara; Y. Katayose; C. Kato; K. Kawata; Labaciren; G. M. Le

Recent results and future prospects of the Tibet air-shower experiment are reported on the all-particle energy spectrum and the chemical composition of cosmic rays around 10 15 eV energy range. The knee of the all-particle energy spectrum has been clearly observed at the energy around 4 ×10 15 eV by Tibet III air-shower array located at Yangbajing, Tibet, China (atmospheric depth 606 g/cm 2 , area 37,000 m 2 ). The energy spectrum of light components (protons and helium) measured by air-shower-core detector exhibits steeper power index than that of direct measurements below 10 14 eV, leading to decreasing fraction of the light component toward the knee. Hence, it is strongly suggested that the origin of the knee is related with the change of the chemical composition of cosmic rays. A new air-shower-core detector called `YAC is under the preparation for explicit measurement of the heavy component.


Advances in Space Research | 2011

Cosmic-ray energy spectrum around the knee obtained by the Tibet experiment and future prospects

M. Amenomori; X. J. Bi; D. Chen; S. W. Cui; Danzengluobu; L. K. Ding; X. H. Ding; C. Fan; C. F. Feng; Zhaoyang Feng; Z. Y. Feng; X. Y. Gao; Q. X. Geng; H. W. Guo; H. H. He; M. He; K. Hibino; N. Hotta; Haibing Hu; H. B. Hu; J. Huang; Q. Huang; H. Y. Jia; F. Kajino; K. Kasahara; Y. Katayose; C. Kato; K. Kawata; Labaciren; G. M. Le


Astrophysics and Space Sciences Transactions | 2011

Cosmic-ray energy spectrum around the knee observed with the Tibet air-shower experiment

M. Amenomori; X. J. Bi; D. Chen; S. W. Cui; Danzengluobu; L. K. Ding; X. H. Ding; C. Fan; C. F. Feng; Zhaoyang Feng; Z. Y. Feng; X. Y. Gao; Q. X. Geng; Q. B. Gou; H. W. Guo; H. H. He; M. He; K. Hibino; N. Hotta; Haibing Hu; H. B. Hu; J. Huang; Q. Huang; H. Y. Jia; L. Jiang; F. Kajino; K. Kasahara; Y. Katayose; C. Kato; K. Kawata


arXiv: Astrophysics of Galaxies | 2009

Large-scale sidereal anisotropy of multi-TeV galactic cosmic rays and the heliosphere

M. Amenomori; X. J. Bi; D. Chen; S. W. Cui; Danzengluobu; L. K. Ding; X. H. Ding; C. Fan; C. F. Feng; Zhaoyang Feng; Z. Y. Feng; X. Y. Gao; Q. X. Geng; Q. B. Gou; H. W. Guo; H. H. He; Mao He; K. Hibino; N. Hotta; Haibing Hu; H. B. Hu; J. Huang; Q. Huang; H. Y. Jia; L. Jiang; F. Kajino; K. Kasahara; Y. Katayose; C. Kato; K. Kawata

Collaboration


Dive into the K. Kasahara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. Hotta

Utsunomiya University

View shared research outputs
Top Co-Authors

Avatar

Y. Katayose

Yokohama National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. B. Hu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge