Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where K. Lenhard Rudolph is active.

Publication


Featured researches published by K. Lenhard Rudolph.


Nature Genetics | 2007

Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation

Aaheli Roy Choudhury; Zhenyu Ju; Meta Wulandari Djojosubroto; Andrea Schienke; André Lechel; Sonja Schaetzlein; Hong Jiang; Anna Stepczynska; Chunfang Wang; Jan Buer; Han-Woong Lee; Thomas von Zglinicki; Arnold Ganser; Peter Schirmacher; Hiromitsu Nakauchi; K. Lenhard Rudolph

Telomere shortening limits the proliferative lifespan of human cells by activation of DNA damage pathways, including upregulation of the cell cycle inhibitor p21 (encoded by Cdkn1a, also known as Cip1 and Waf1)) (refs. 1–5). Telomere shortening in response to mutation of the gene encoding telomerase is associated with impaired organ maintenance and shortened lifespan in humans and in mice. The in vivo function of p21 in the context of telomere dysfunction is unknown. Here we show that deletion of p21 prolongs the lifespan of telomerase-deficient mice with dysfunctional telomeres. p21 deletion improved hematolymphopoiesis and the maintenance of intestinal epithelia without rescuing telomere function. Moreover, deletion of p21 rescued proliferation of intestinal progenitor cells and improved the repopulation capacity and self-renewal of hematopoietic stem cells from mice with dysfunctional telomeres. In these mice, apoptotic responses remained intact, and p21 deletion did not accelerate chromosomal instability or cancer formation. This study provides experimental evidence that telomere dysfunction induces p21-dependent checkpoints in vivo that can limit longevity at the organismal level.


Nature Reviews Molecular Cell Biology | 2012

DNA damage checkpoints in stem cells, ageing and cancer

Tobias Sperka; Jianwei Wang; K. Lenhard Rudolph

DNA damage induces cell-intrinsic checkpoints, including p53 and retinoblastoma (RB), as well as upstream regulators (exonuclease 1 (EXO1), ataxia telangiectasia mutated (ATM), ATR, p16INK4a and p19ARF) and downstream targets (p21, PUMA (p53 upregulated modulator of apoptosis) and sestrins). Clearance of damaged cells by cell-intrinsic checkpoints suppresses carcinogenesis but as a downside may impair stem cell and tissue maintenance during ageing. Modulating the activity of DNA damage checkpoints can either accelerate or decelerate tissue ageing and age-related carcinogenesis. The outcome depends on cell-intrinsic and cell-extrinsic mechanisms that regulate the clearance of damaged cells and on the molecular context in ageing tissues, including the level of DNA damage accumulation itself.


Nature Medicine | 2007

Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment

Zhenyu Ju; Hong Jiang; Maike Jaworski; Chozhavendan Rathinam; Anne Gompf; Christoph Klein; Andreas Trumpp; K. Lenhard Rudolph

Cell-intrinsic checkpoints limit the proliferative capacity of primary cells in response to telomere dysfunction. It is not known, however, whether telomere dysfunction contributes to cell-extrinsic alterations that impair stem cell function and organ homeostasis. Here we show that telomere dysfunction provokes defects of the hematopoietic environment that impair B lymphopoiesis but increase myeloid proliferation in aging telomerase knockout (Terc−/−) mice. Moreover, the dysfunctional environment limited the engraftment of transplanted wild-type hematopoietic stem cells (HSCs). Dysfunction of the hematopoietic environment was age dependent and correlated with progressive telomere shortening in bone marrow stromal cells. Telomere dysfunction impaired mesenchymal progenitor cell function, reduced the capacity of bone marrow stromal cells to maintain functional HSCs, and increased the expression of various cytokines, including granulocyte colony-stimulating factor (G-CSF), in the plasma of aging mice. Administration of G-CSF to wild-type mice mimicked some of the defects seen in aging Terc−/− mice, including impairment of B lymphopoiesis and HSC engraftment. Conversely, inhibition of G-CSF improved HSC engraftment in aged Terc−/− mice. Taken together, these results show that telomere dysfunction induces alterations of the environment that can have implications for organismal aging and cell transplantation therapies.


Cell | 2012

A Differentiation Checkpoint Limits Hematopoietic Stem Cell Self-Renewal in Response to DNA Damage

Jianwei Wang; Qian Sun; Yohei Morita; Hong Jiang; Alexander Groß; André Lechel; Kai Hildner; Luis Miguel Guachalla; Anne Gompf; Daniel Hartmann; Axel Schambach; Torsten Wuestefeld; Daniel Dauch; Hubert Schrezenmeier; Wolf-Karsten Hofmann; Hiromitsu Nakauchi; Zhenyu Ju; Hans A. Kestler; Lars Zender; K. Lenhard Rudolph

Checkpoints that limit stem cell self-renewal in response to DNA damage can contribute to cancer protection but may also promote tissue aging. Molecular components that control stem cell responses to DNA damage remain to be delineated. Using in vivo RNAi screens, we identified basic leucine zipper transcription factor, ATF-like (BATF) as a major component limiting self-renewal of hematopoietic stem cells (HSCs) in response to telomere dysfunction and γ-irradiation. DNA damage induces BATF in a G-CSF/STAT3-dependent manner resulting in lymphoid differentiation of HSCs. BATF deletion improves HSC self-renewal and function in response to γ-irradiation or telomere shortening but results in accumulation of DNA damage in HSCs. Analysis of bone marrow from patients with myelodysplastic syndrome supports the conclusion that DNA damage-dependent induction of BATF is conserved in human HSCs. Together, these results provide experimental evidence that a BATF-dependent differentiation checkpoint limits self-renewal of HSCs in response to DNA damage.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Proteins induced by telomere dysfunction and DNA damage represent biomarkers of human aging and disease.

Hong Jiang; Eric Schiffer; Zhangfa Song; Jianwei Wang; Petra Zürbig; Kathrin Thedieck; Suzette Moes; Heike Bantel; Nadja Saal; Justyna Jantos; Meiken Brecht; Paul Jenö; Michael N. Hall; Klaus Hager; Michael P. Manns; Hartmut Hecker; Arnold Ganser; Konstanze Döhner; Andrzej Bartke; Christoph Meissner; Harald Mischak; Zhenyu Ju; K. Lenhard Rudolph

Telomere dysfunction limits the proliferative capacity of human cells by activation of DNA damage responses, inducing senescence or apoptosis. In humans, telomere shortening occurs in the vast majority of tissues during aging, and telomere shortening is accelerated in chronic diseases that increase the rate of cell turnover. Yet, the functional role of telomere dysfunction and DNA damage in human aging and diseases remains under debate. Here, we identified marker proteins (i.e., CRAMP, stathmin, EF-1α, and chitinase) that are secreted from telomere-dysfunctional bone-marrow cells of late generation telomerase knockout mice (G4mTerc−/−). The expression levels of these proteins increase in blood and in various tissues of aging G4mTerc−/− mice but not in aging mice with long telomere reserves. Orthologs of these proteins are up-regulated in late-passage presenescent human fibroblasts and in early passage human cells in response to γ-irradiation. The study shows that the expression level of these marker proteins increases in the blood plasma of aging humans and shows a further increase in geriatric patients with aging-associated diseases. Moreover, there was a significant increase in the expression of the biomarkers in the blood plasma of patients with chronic diseases that are associated with increased rates of cell turnover and telomere shortening, such as cirrhosis and myelodysplastic syndromes (MDS). Analysis of blinded test samples validated the effectiveness of the biomarkers to discriminate between young and old, and between disease groups (MDS, cirrhosis) and healthy controls. These results support the concept that telomere dysfunction and DNA damage are interconnected pathways that are activated during human aging and disease.


Cell | 2007

Exonuclease-1 Deletion Impairs DNA Damage Signaling and Prolongs Lifespan of Telomere-Dysfunctional Mice

Sonja Schaetzlein; N.R. Kodandaramireddy; Zhenyu Ju; André Lechel; Anna Stepczynska; Dana R. Lilli; Alan B. Clark; Cornelia Rudolph; Florian Kühnel; Kaichun Wei; Brigitte Schlegelberger; Peter Schirmacher; Thomas A. Kunkel; Roger A. Greenberg; Winfried Edelmann; K. Lenhard Rudolph

Exonuclease-1 (EXO1) mediates checkpoint induction in response to telomere dysfunction in yeast, but it is unknown whether EXO1 has similar functions in mammalian cells. Here we show that deletion of the nuclease domain of Exo1 reduces accumulation of DNA damage and DNA damage signal induction in telomere-dysfunctional mice. Exo1 deletion improved organ maintenance and lifespan of telomere-dysfunctional mice but did not increase chromosomal instability or cancer formation. Deletion of Exo1 also ameliorated the induction of DNA damage checkpoints in response to gamma-irradiation and conferred cellular resistance to 6-thioguanine-induced DNA damage. Exo1 deletion impaired upstream induction of DNA damage responses by reducing ssDNA formation and the recruitment of Replication Protein A (RPA) and ATR at DNA breaks. Together, these studies provide evidence that EXO1 contributes to DNA damage signal induction in mammalian cells, and deletion of Exo1 can prolong survival in the context of telomere dysfunction.


Cancer Cell | 2013

Loss of p53 in Enterocytes Generates an Inflammatory Microenvironment Enabling Invasion and Lymph Node Metastasis of Carcinogen-Induced Colorectal Tumors

Sarah Schwitalla; Paul K. Ziegler; David Horst; Valentin Becker; Irina Kerle; Yvonne Begus-Nahrmann; André Lechel; K. Lenhard Rudolph; Rupert Langer; Julia Slotta-Huspenina; Franz G. Bader; Olivia Prazeres da Costa; Markus F. Neurath; Alexander Meining; Thomas Kirchner; Florian R. Greten

Loss of p53 is considered to allow progression of colorectal tumors from the adenoma to the carcinoma stage. Using mice with an intestinal epithelial cell (IEC)-specific p53 deletion, we demonstrate that loss of p53 alone is insufficient to initiate intestinal tumorigenesis but markedly enhances carcinogen-induced tumor incidence and leads to invasive cancer and lymph node metastasis. Whereas p53 controls DNA damage and IEC survival during the initiation stage, loss of p53 during tumor progression is associated with increased intestinal permeability, causing formation of an NF-κB-dependent inflammatory microenvironment and the induction of epithelial-mesenchymal transition. Thus, we propose a p53-controlled tumor-suppressive function that is independent of its well-established role in cell-cycle regulation, apoptosis, and senescence.


Hepatology | 2005

Telomerase antagonists GRN163 and GRN163L inhibit tumor growth and increase chemosensitivity of human hepatoma

Meta Wulandari Djojosubroto; Allison C. Chin; Ning Go; Sonja Schaetzlein; Michael P. Manns; Sergei M. Gryaznov; Calvin B. Harley; K. Lenhard Rudolph

Most cancer cells have an immortal growth capacity as a consequence of telomerase reactivation. Inhibition of this enzyme leads to increased telomere dysfunction, which limits the proliferative capacity of tumor cells; thus, telomerase inhibition represents a potentially safe and universal target for cancer treatment. We evaluated the potential of two thio‐phosphoramidate oligonucleotide inhibitors of telomerase, GRN163 and GRN163L, as drug candidates for the treatment of human hepatoma. GRN163 and GRN163L were tested in preclinical studies using systemic administration to treat flank xenografts of different human hepatoma cell lines (Hep3B and Huh7) in nude mice. The studies showed that both GRN163 and GRN163L inhibited telomerase activity and tumor cell growth in a dose‐dependent manner in vitro and in vivo. The potency and efficacy of the lipid‐conjugated antagonist, GRN163L, was superior to the nonlipidated parent compound, GRN163. Impaired tumor growth in vivo was associated with critical telomere shortening, induction of telomere dysfunction, reduced rate of cell proliferation, and increased apoptosis in the treatment groups. In vitro, GRN163L administration led to higher prevalence of chromosomal telomere‐free ends and DNA damage foci in both hepatoma cell lines. In addition, in vitro chemosensitivity assay showed that pretreatment with GRN163L increased doxorubicin sensitivity of Hep3B. In conclusion, our data support the development of GRN163L, a novel lipidated conjugate of the telomerase inhibitor GRN163, for systemic treatment of human hepatoma. In addition to limiting the proliferative capacity of hepatoma, GRN163L might also increase the sensitivity of this tumor type to conventional chemotherapy. (HEPATOLOGY 2005.)


Hepatology | 2004

Telomeres and telomerase: a dual role in hepatocarcinogenesis

Ande Satyanarayana; Michael P. Manns; K. Lenhard Rudolph

Telomere shortening limits the proliferative capacity of primary human cells and restrains the regenerative capacity of organ systems during chronic diseases and aging. Telomere shortening apparently has a dual role in tumor development and progression. On the one hand, it induces chromosomal instability and the initiation of cancer; on the other hand, tumor progression requires stabilization of telomeres. The predominant mechanism of telomere stabilization in tumor cells is the activation of the telomere‐synthesizing enzyme telomerase. The potential use of telomerase activators for the treatment of regenerative disorders will ultimately depend on their effects on tumorigenesis. This review focuses on the role of telomere shortening and telomerase in carcinogenesis with a special focus on hepatocellular carcinoma. (HEPATOLOGY 2004;40:276–283.)


Hepatology | 2004

Hepatocellular telomere shortening correlates with chromosomal instability and the development of human hepatoma

Ruben R. Plentz; Martin Caselitz; Joerg S. Bleck; M. Gebel; Peer Flemming; Stefan Kubicka; Michael P. Manns; K. Lenhard Rudolph

The telomere hypothesis of cancer initiation indicates that telomere shortening initiates cancer by induction of chromosomal instability. To test whether this hypothesis applies to human hepatocellular carcinoma (HCC), we analyzed the telomere length of hepatocytes in cytological smears of fine‐needle biopsies of liver tumors from patients with cirrhosis (n = 39). The tumors consisted of 24 HCC and 15 regenerative nodules as diagnosed by combined histological and cytological diagnostics. In addition, we analyzed the telomere length of hepatocytes in HCC and surrounding noncancerous liver tissue within individual patients in another cohort of 10 patients with cirrhosis. Telomere length analysis of hepatocytes was correlated with tumor pathology and ploidy grade of the tumors, which was analyzed by cytophotometry. Telomeres were significantly shortened in hepatocytes of HCC compared to hepatocytes in regenerative nodules or surrounding noncancerous liver tissue. Hepatocyte telomere shortening in HCC was independent of the patients age. There was no overlap in mean telomere lengths of individual samples when comparing HCC with regenerative nodules or noncancerous surrounding liver. Within the HCC group, telomeres were significantly shorter in hepatocytes of aneuploid tumors compared to diploid tumors. In conclusion, our data suggest that the telomere hypothesis of cancer initiation applies to human HCC and that cell type‐specific telomere length analysis might indicate the risk of HCC development. (HEPATOLOGY 2004;40:80–86.)

Collaboration


Dive into the K. Lenhard Rudolph's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Schirmacher

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge