Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where K. Lukowiak is active.

Publication


Featured researches published by K. Lukowiak.


Neuron | 1992

Transplantation and functional integration of an identified respiratory interneuron in lymnaea stagnalis

Naweed I. Syed; R. L. Ridgway; K. Lukowiak; Andrew G. M. Bulloch

The possibility that damaged neural circuitries can be repaired through grafting has raised questions regarding the cellular mechanisms required for functional integration of transplanted neurons. Invertebrate models offer the potential to examine such mechanisms at the resolution of single identified neurons within well-characterized neural networks. Here it is reported that a specific deficit in the respiratory behavior of a pulmonate mollusc, caused by the ablation of a solitary interneuron, can be restored by grafting an identical donor interneuron. The transplanted interneuron not only survives and extends neurites within the host nervous system, but under specific conditions forms synapses with appropriate target neurons and is physiologically integrated into the hosts circuitry, thereby restoring normal behavior.


Molecular Brain | 2010

A quantitative proteomic analysis of long-term memory

David Rosenegger; Cynthia Wright; K. Lukowiak

BackgroundMemory is the ability to store, retain, and later retrieve learned information. Long-term memory (LTM) formation requires: DNA transcription, RNA translation, and the trafficking of newly synthesized proteins. Several components of these processes have already been identified. However, due to the complexity of the memory formation process, there likely remain many yet to be identified proteins involved in memory formation and persistence.ResultsHere we use a quantitative proteomic method to identify novel memory-associated proteins in neural tissue taken from animals that were trained in vivo to form a long-term memory. We identified 8 proteins that were significantly up-regulated, and 13 that were significantly down-regulated in the LTM trained animals as compared to two different control groups. In addition we found 19 proteins unique to the trained animals, and 12 unique proteins found only in the control animals.ConclusionsThese results both confirm the involvement of previously identified memory proteins such as: protein kinase C (PKC), adenylate cyclase (AC), and proteins in the mitogen-activated protein kinase (MAPK) pathway. In addition these results provide novel protein candidates (e.g. UHRF1 binding protein) on which to base future studies.


The Journal of Experimental Biology | 2009

Differences in LTM-forming capability between geographically different strains of Alberta Lymnaea stagnalis are maintained whether they are trained in the lab or in the wild

Mike Orr; Karla Hittel; Kai S. Lukowiak; J. Han; K. Lukowiak

SUMMARY We found strain differences in the ability of wild Alberta Lymnaea stagnalis to form long-term memory (LTM) following operant conditioning when L. stagnalis were collected from the wild and trained in the laboratory. Lymnaea stagnalis obtained from the Belly River watershed had an enhanced ability to form LTM compared with those from an isolated pond (referred to as Jackson snails). We therefore asked whether the differences in cognitive ability were an epiphenomenon as a result of training in the laboratory. To answer this question we trained each specific strain (Belly and Jackson) in both the laboratory and the field (i.e. in their home pond and in the pond where the other strain resided - referred to as the visitor pond). We found that within each strain there was no difference in the LTM phenotype whether they were trained in the lab or in either their home or visitor pond. That is, the strain differences in the ability to form LTM were still present. Interestingly, we found no strain differences in the ability to learn or the ability to form intermediate-term memory (ITM).


Brain Research | 1996

Identification and localization of a [Met5]-enkephalin-like peptide in the mollusc, Lymnaea stagnalis

N.M Ewadinger; R.L Ridgway; Naweed I. Syed; K. Lukowiak; Andrew G. M. Bulloch

The goal of this study was to determine whether [Met5]-enkephalin, or an analog, is present in identified neurons in the central nervous system (CNS) of the freshwater snail, Lymnaea stagnalis. High performance liquid chromatography and radioimmunoassay of CNS tissue homogenates revealed both [Met5]-enkephalin and oxidized [Met5]-enkephalin. NO [Leu5]-enkephalin, [Met5]-enkephalin-Arg6-Phe7 or [Met5]-enkephalin-Arg6-Gly7-Leu8 were detected. Quantification of [Met5]-enkephalin, by radioimmunoassay, revealed that the Lymnaea CNS contains approximately 2.2 fmol/CNS (undigested tissue) and 4.5 fmol/CNS (tissue enzymatically digested with trypsin and carboxypeptidase B). The increased amount of [Met5]-enkephalin following tissue digestion indicates the presence of as yet unidentified extended forms of [Met5]-enkephalin in Lymnaea. Using indirect immunocytochemistry, a [Met5]-enkephalin-like peptide was localized to individual cells and cell clusters within the CNS, as well as to fibers in the atrium of the heart. A neuronal map depicting [Met5]-enkephalin-like immunoreactive cells was produced. Among the immunoreactive neurons were four identified, well-characterized, giant cells: VD1, RPD2, LB1 and RB1. Identifiable [Met5]-enkephalin-like immunoreactive neurons were characterized electrophysiologically and morphologically. Additionally, neurons VD1 and RPD2 were confirmed to be immunoreactive to Lymnaea alpha-peptide. The lack of both cross reactivity and sequence homology between alpha-peptide and [Met5]-enkephalin suggests that a [Met5]-enkephalin-like peptide and alpha-peptide are co-localized within these neurons.


Molecular Brain | 2010

The participation of NMDA receptors, PKC, and MAPK in the formation of memory following operant conditioning in Lymnaea

David Rosenegger; K. Lukowiak

BackgroundMemory is the ability to store, retain, and later retrieve information that has been learned. Intermediate term memory (ITM) that persists for up to 3 h requires new protein synthesis. Long term memory (LTM) that persists for at least 24 h requires: DNA transcription, RNA translation, and the trafficking of newly synthesized proteins. It has been shown in a number of different model systems that NMDA receptors, protein kinase C (PKC) and mitogen activated protein kinase (MAPK) are all involved in the memory formation process.ResultsHere we show that snails trained in control conditions are capable of forming, depending on the training procedure used, either ITM or LTM. However, blockage of NMDA receptors (MK 801), inhibition of PKC (GF109203X hydrochloride) and MAPK activity (UO126) prevent the formation of both ITM and LTM.ConclusionsThe injection of either U0126 or GF109203X, which inhibit MAPK and PKC activity respectively, 1 hour prior to training results in the inhibition of both ITM and LTM formation. We further found that NMDA receptor activity was necessary in order for both ITM and LTM formation.


The Journal of Experimental Biology | 2010

Predator detection enables juvenile Lymnaea to form long-term memory

Mike Orr; Karla Hittel; K. Lukowiak

SUMMARY Learning and memory provide the flexibility an organism requires to respond to changing social and ecological conditions. Juvenile Lymnaea have previously been shown to have a diminished capacity to form long-term memory (LTM) following operant conditioning of aerial respiratory behavior. Juvenile Lymnaea, however, can form LTM following classical conditioning of appetitive behaviors. Here, we demonstrate that laboratory-reared juvenile Lymnaea have the ability to detect the presence of a sympatric predator (i.e. crayfish) and respond to the predator by altering their aerial respiratory behavior. In addition to increasing their total breathing time, predator detection confers on juvenile Lymnaea an enhanced capability to form LTM following operant conditioning of aerial respiratory behavior. That is, these juveniles now have the ability to form long-lasting memory. These data support the hypothesis that biologically relevant levels of stress associated with predator detection induce behavioral phenotypic alterations (i.e. enhanced LTM formation) in juveniles, which may increase their fitness. These data also support the notion that learning and memory formation in conjunction with predator detection is a form of inducible defense.


Invertebrate Neuroscience | 1995

Sensorin-A immunocytochemistry reveals putative mechanosensory neurons in Lymnaea CNS.

Isabella Steffensen; Naweed I. Syed; K. Lukowiak; Andrew G. M. Bulloch; Catherine E. Morris

The pond snailLymnaea stagnalis is a useful model system for studying the neural basis of behaviour but the mechanosensory inputs that impact on behaviours such as respiration, locomotion, reproduction and feeding are not known. InAplysia, the peptide sensorin-A appears to be specific to a class of central mechanosensory neurons. We show that in theLymnaea central nervous system sensorin-A immunocytochemistry reveals a discrete pattern of staining involving well over 100 neurons. Identifiable sensorin positive clusters of neurons are located in the buccal and cerebral ganglia, and a single large neuron is immunopositive in each pedal ganglion. These putative mechanosensory neurons are not in the same locations as previously identified motoneurons, interneurons or neurosecretory cells. As would be expected for a mechanoafferent, sensorin positive fibres were found in nerve tracts innervating the body wall. This study lays the foundation for future electrophysiological and behavioural analysis of these putative mechanosensory neurons.


BMC Oral Health | 2014

Facial morphometrics of children with non-syndromic orofacial clefts in Tanzania

Mange Manyama; Jacinda R. Larson; Denise K. Liberton; Campbell Rolian; Francis J. Smith; Emmanuel Kimwaga; Japhet M. Gilyoma; K. Lukowiak; Richard A. Spritz; Benedikt Hallgrímsson

BackgroundOrofacial clefts (cleft lip/palate; CL/P) are among the most common congenital anomalies, with prevalence that varies among different ethnic groups. Craniofacial shape differences between individuals with CL/P and healthy controls have been widely reported in non-African populations. Knowledge of craniofacial shape among individuals with non-syndromic CL/P in African populations will provide further understanding of the ethnic and phenotypic variation present in non-syndromic orofacial clefts.MethodsA descriptive cross-sectional study was carried out at Bugando Medical Centre, Tanzania, comparing individuals with unrepaired non-syndromic CL/P and normal individuals without orofacial clefts. Three-dimensional (3D) facial surfaces were captured using a non-invasive 3D camera. The corresponding 3D coordinates for 26 soft tissue landmarks were used to characterize facial shape. Facial shape variation within and between groups, based on Procrustes superimposed data, was studied using geometric morphometric methods.ResultsFacial shape of children with cleft lip differed significantly from the control group, beyond the cleft itself. The CL/P group exhibited increased nasal and mouth width, increased interorbital distance, and more prognathic premaxillary region. Within the CL/P group, PCA showed that facial shape variation is associated with facial height, nasal cavity width, interorbital distance and midfacial prognathism. The isolated cleft lip (CL) and combined cleft lip and palate (CLP) groups did not differ significantly from one another (Procrustes distance = 0.0416, p = 0.50). Procrustes distance permutation tests within the CL/P group showed a significant shape difference between unilateral clefts and bilateral clefts (Procrustes distance = 0.0728, p = 0.0001). Our findings indicate the morphological variation is similar to those of studies of CL/P patients and their unaffected close relatives in non-African populations.ConclusionThe mean facial shape in African children with non-syndromic CL/P differs significantly from children without orofacial clefts. The main differences involve interorbital width, facial width and midface prognathism. The axes of facial shape differences we observed are similar to the patterns seen in Caucasian populations, despite apparent differences in cleft prevalence and cleft type distribution. Similar facial morphology in individuals with CL/P in African and Caucasian populations suggests a similar aetiology.


Archive | 2001

Beyond Chemoreflex: Plasticity, Redundancy and Self-organization in Respiratory Control

Susan A. Ward; Chi-Sang Poon; K. Lukowiak; Donald R. McCrimmon; Frank L. Powell; Kingman P. Strohl

This Workshop addressed emerging issues of central integration of chemoreceptor inputs during challenges such as hypoxia, hypercapnia and exercise. Classical chemoreflex models assume that respiratory output increases in direct proportion to the sum of chemoreceptor inputs via a hard-wired neural controller, with additive interactions between afferent and efferent pathways (Figure lA). While this structure has proved satisfactory in explaining the chemical control of breathing, it seems to fail in other respects such as exercise. Increasing evidence now points to the respiratory controller probably being plastic-wired rather than hard-wired, with inputs and outputs demonstrating redundancy. These recent findings have ushered in a gradual paradigm shift toward an adaptive respiratory controller model structure (see Figure 1B).


Journal of Neurobiology | 1996

Rhythmic activities of isolated and clustered pacemaker neurons and photoreceptors of Aplysia retina in culture

Jon W. Jacklet; Steven Barnes; Andrew G. M. Bulloch; K. Lukowiak; Naweed I. Syed

Each eye of Aplysia contains a circadian clock that produces a robust rhythm of optic nerve impulse activity. To isolate the pacemaker neurons and photoreceptors of the eye and determine their participation in the circadian clock and its generation of rhythmic autoactivity, the retina was dissociated and its cells were placed in primary cell culture. The isolated neurons and photoreceptors survived and vigorously extended neurites tipped with growth cones. Many of the photoreceptors previously described from histological sections of the intact retina were identified in culture, including the large R-type photoreceptor, which gave robust photoresponses, and the smaller tufted, whorled, and flared photoreceptors. The pacemaker neurons responsible for the rhythmic impulse activity generated by the eye were identified by their distinctive monopolar morphology and recordings were made of their activity. Isolated pacemaker neurons produced spontaneous action potentials in darkness, and pacemaker neurons attached to fragments of retina or in an isolated cluster interacted to produce robust spontaneous activity. This study establishes that isolated retinal pacemaker neurons retain their innate autoactivity and ability to produce action potentials in culture and that clusters of coupled pacemaker neurons are capable of generating robust autoactivity comparable to pacemaker neuron rhythmic activity recorded in the intact retina, which was previously shown to correspond to 1:1 with the optic nerve compound action potential activity.

Collaboration


Dive into the K. Lukowiak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mike Orr

University of Calgary

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge