Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where K.M. Cohen is active.

Publication


Featured researches published by K.M. Cohen.


Geology | 2010

Timing and magnitude of the sea-level jump preluding the 8200 yr event

Marc P. Hijma; K.M. Cohen

Evidence from terrestrial, glacial, and global climate model reconstructions suggests that a sea-level jump caused by meltwater release was associated with the triggering of the 8.2 ka cooling event. However, there has been no direct measurement of this jump using precise sea-level data. In addition, the chronology of the meltwater pulse is based on marine data with limited dating accuracy. The most plausible mechanism for triggering the cooling event is the sudden, possibly multistaged drainage of the Laurentide proglacial Lakes Agassiz and Ojibway through the Hudson Strait into the North Atlantic ca. 8470 ± 300 yr ago. Here we show with detailed sea-level data from Rotterdam, Netherlands, that the sea-level rise commenced 8450 ± 44 yr ago. Our timing considerably narrows the existing age of this drainage event and provides support for the hypothesis of a double-staged lake drainage. The jump in sea level reached a local magnitude of 2.11 ± 0.89 m within 200 yr, in addition to the ongoing background relative sea-level rise (1.95 ± 0.74 m). This magnitude, observed at considerable distance from the release site, points to a global-averaged eustatic sea-level jump that is double the size of previous estimates (3.0 ± 1.2 m versus 0.4–1.4 m). The discrepancy suggests either a coeval Antarctic contribution or, more likely, a previous underestimate of the total American lake drainage.


The Holocene | 2007

Holocene floodplain sediment storage and hillslope erosion within the Rhine catchment

Thomas Hoffmann; Gilles Erkens; K.M. Cohen; Peter Houben; J. Seidel; R. Dikau

The response of fluvial systems to land use and climate change varies depending on catchment size. While forcing-response mechanisms of small catchments are reasonably well understood, the response of larger drainage basins is less clear. In particular, the impact of land use and climate change on the Rhine system is poorly understood because of the catchment size (185 000 km2) and the long history of human cultivation, which started approximately 7500 years ago. A sediment budget is calculated to specify the amount of alluvial sediment that was deposited during the Holocene and to estimate long-term soil erosion rates. The results suggest that 59±14 X 109 t of Holocene alluvial sediment is stored in the non-alpine part of the Rhine catchment (South and Central Germany, Eastern France, The Netherlands). About 50% of Holocene alluvial sediment is deposited along the trunk valley and the delta (Upper Rhine, Lower Rhine, coastal plain), while the rest is stored along the tributary valleys. The floodplain sediment storage corresponds to a mean erosion rate of 0.55±0.16 t/ha per yr (38.5±10.7 mm/kyr) across the Rhine catchment outside the Alps. This Holocene-averaged estimate amounts for sediments that were delivered to the channel network and is at the lower limit of erosion rates from other studies of different methodology.


Geologie En Mijnbouw | 2009

From river valley to estuary: the evolution of the Rhine mouth in the early to middle Holocene (western Netherlands,Rhine-Meuse delta)

Marc P. Hijma; K.M. Cohen; Gösta Hoffmann; A.J.F. van der Spek; E. Stouthamer

The aim of this paper is to reconstruct the evolution of the early to middle Holocene Rhine-Meuse river mouths in the western Netherlands and to understand the observed spatial and temporal changes in facies. This is achieved by constructing three delta wide cross-sections using a newly accumulated database with thousands of core descriptions and cone penetration test results, together with a large set of pollen/diatom analyses and OSL/14C-dates. Most of the studied deposits accumulated in the fluvial-to-marine transition zone, a highly complex area due to the interaction of terrestrial and marine processes. Understanding how the facies change within this zone, is necessary to make correct palaeogeographic interpretations. We find a well preserved early to middle Holocene coastal prism resting on lowstand valley floors. Aggradation started after 9 ka cal BP as a result of rapid sea-level rise. Around 8 ka most parts of the study area were permanently flooded and under tidal influence. After 8 ka a bay-head delta was formed near Delft, meaning that little sand could reach the North Sea. Several subsequent avulsions resulted in a shift from the constantly retreating Rhine river mouth to the north. When after 6.5 ka the most northerly river course was formed (Oude Rijn), the central part of the palaeovalley was quickly transgressed and transformed into a large tidal basin. Shortly before 6 ka retrogradation of the coastline halted and tidal inlets began to close, marking the end of the early-middle Holocene transgression. This paper describes the transition from a fluvial valley to an estuary in unprecedented detail and enables more precise palaeo-reconstructions, evaluation of relative importance of fluvial and coastal processes in rapid transgressed river mouths, and more accurate sediment-budget calculations. The described and well illustrated (changes in) facies are coupled to lithogenetic units. This will aid detailed palaeogeographic interpretations from sedimentary successions, not only in the Netherlands, but also in other estuarine and deltaic regions.


Geologie En Mijnbouw | 2005

Sedimentary architecture and optical dating of Middle and Late Pleistocene Rhine-Meuse deposits – fluvial response to climate change, sea-level fluctuation and glaciation

F.S. Busschers; H.J.T. Weerts; J. Wallinga; P. Cleveringa; C. Kasse; H. de Wolf; K.M. Cohen

Eight continuous corings in the west-central Netherlands show a 15 to 25 m thick stacked sequence of sandy to gravelly channel-belt deposits of the Rhine-Meuse system. This succession of fluvial sediments was deposited under net subsiding conditions in the southern part of the North Sea Basin and documents the response of the Rhine-Meuse river system to climate and sea-level change and to the glaciation history. On the basis of grain size characteristics, sedimentological structures, nature and extent of bounding surfaces and palaeo-ecological data, the sequence was subdivided into five fluvial units, an estuarine and an aeolian unit. Optical dating of 34 quartz samples showed that the units have intra Saalian to Weichselian ages (Marine Isotope Stages 8 to 2). Coarse-grained fluvial sediments primarily deposited under cold climatic conditions, with low vegetation cover and continuous permafrost. Finer-grained sediments generally deposited during more temperate climatic conditions with continuous vegetation cover and/or periods of sea-level highstand. Most of the sedimentary units are bounded by unconformities that represent erosion during periods of climate instability, sea-level fall and/or glacio-isostatic uplift.


Geologie En Mijnbouw | 2002

Fluvial deposits as a record for Late Quaternary neotectonic activity in the Rhine-Meuse delta,The Netherlands

K.M. Cohen; E. Stouthamer; Henk J.A. Berendsen

Neotectonic movements have caused differential subsidence in the Lower Rhine Embayment during the Quaternary. The Late Weichselian and Holocene Rhine-Meuse fluvial archive in the central Netherlands was used to quantify neotectonic movements in a setting that was primarily controlled by sea-level rise and climate change. Evidence for neotectonic activity in the central Netherlands is reviewed. Sedimentary evidence shows that fluvial deposits of Late Weichselian and Holocene Rhine and Meuse (Maas) distributaries are vertically displaced along the northern shoulder of the Roer Valley Graben system. Elevation differences in the longitudinal profiles of Late Weichselian terrace deposits were used to quantify tectonic displacements. New results for the southeastern Rhine-Meuse delta (Maaskant area) show that displacements in the top of the Pleniglacial terrace along the Peel Boundary Fault are up to 1.4 m. The maximum displacement between the Peel Horst and the Roer Valley Graben is 2.3 m. This is equivalent to relative tectonic movement rates of 0.09-0.15 mm/yr, averaged over the last 15,000 years.


International Journal of Geographical Information Science | 2007

The use of GIS in reconstructing the Holocene palaeogeography of the Rhine-Meuse delta, The Netherlands

Henk J.A. Berendsen; K.M. Cohen; E. Stouthamer

In Holocene palaeogeographical studies, GIS nowadays is used in various ways, embracing either GIS modelling possibilities or GIS spatial data storage functionality. This paper is an example of the latter type of GIS use for reconstruction of the Holocene Rhine–Meuse delta (128×75 km; part of the Dutch coastal plain). Depositional traces of river courses (channel belts) are major features to map. We digitized mapped channel belt fragments and stored their reconstructed ages in a linked table. The GIS data structure allows checking for internal consistency of the implemented reconstruction, enabling iterative improvement while digitizing and labelling. Palaeogeographical maps for any given time during the Holocene result from GIS‐database queries. Coupled to the GIS are high‐resolution digital elevation data (sub‐decimetre accurate laser‐altimetry data covering the entire study area) and a database of ca 100 000 borehole descriptions, allowing for further mapping improvements. The GIS structure and digital data together greatly improved mapping and enable larger areas to be mapped in greater detail with greater accuracy and in less time.


Geologie En Mijnbouw | 2012

Climate-driven fluvial development and valley abandonment at the last glacial-interglacial transition (Oude IJssel-Rhine, Germany)

M.M. Janssens; C. Kasse; S.J.P. Bohncke; H. Greaves; K.M. Cohen; J. Wallinga; Wim Z. Hoek

In the Weichselian, the Lower Rhine in the Dutch-German border region has used three courses, dissecting ice-marginal topography inherited from the Saalian. In the Late Weichselian, the three courses functioned simultaneously, with the central one gaining importance and the outer ones abandoning. This study aims to reconstruct the fluvial development and forcings that culminated in abandonment of the northern branch ‘Oude IJssel-Rhine’, at the time of the Lateglacial to Holocene transition. The fluvial architecture is studied using a cored transect over the full width of the valley, detailed cross-sections over palaeochannels and geomorphological analysis using digital elevation and borehole data. Biostratigraphy, radiocarbon dating and OSL dating provide a timeframe to reconstruct the temporal fluvial development. In its phase of abandonment, the fluvial evolution of the Oude IJssel-Rhine course is controlled by the ameliorating climate and related vegetation and discharge changes, besides by intrinsic (autogenic) fluvial behaviour such as the competition for discharge with the winning central branch and the vicinity of the Lippe tributary confluence. The rapid climate warming at the start of the Late Glacial resulted in flow contraction as the initial response. Other fluvial geomorphic adjustments followed, with some delay. An aggrading braided or transitional system persisted until the start of the Allerod, when channel patterns finally changed to meandering. Floodplain incision occurred at the Allerod - Younger Dryas transition and a multi-channel system developed fed by Rhine discharge. At the start of the Holocene, this system transformed into a small-scale, local meandering system, which was abandoned shortly after the start of the Holocene. The final abandonment of the Oude IJssel-Rhine and Niers-Rhine courses can be attributed to deep incision of the Central Rhine course in the earliest Holocene and is considered to be controlled by flow contraction induced by climate and related vegetation and discharge changes.


The Holocene | 2017

The impact of avulsion on groundwater level and peat formation in delta floodbasins during the middle-Holocene transgression in the Rhine-Meuse delta, The Netherlands

S. van Asselen; K.M. Cohen; E. Stouthamer

By redistributing water and sediment in delta plains, avulsions of river branches have major environmental impacts, notably in changing hydrological and peat-forming conditions in floodbasins. The central part of the Rhine-Meuse delta, with its extensive databases including detailed lithological data and high-resolution age control, offers a unique opportunity to study middle-Holocene avulsion impacts on floodbasin groundwater level and peat formation. Avulsion has caused local accelerations of rising groundwater tables to be superimposed on decelerating base-level rise. This is evident from comparing single-site groundwater rise for multiple floodbasins in the river-dominated part of the delta, with regionally averaged groundwater-rise reconstructions. Floodbasin type (lacustrine versus terrestrial wetland), size and openness, partly through effects on discharge dispersal, affect how strongly the floodbasin groundwater tables respond to avulsion-diverted discharge. Cross-sectional lithology repeatedly indicates a shift from high-organic wood peat to low-organic reed peat in the vicinity of the avulsed channel, resulting from changes in water-table regime and nutrient status. Avulsive impact on the floodbasin groundwater table was most pronounced during the transition from transgressive to high-stand stage (between ca. 6000 and 4000 years ago), owing to developing floodbasin compartmentalization (size reduction, confinement) resulting from repeated avulsion. By way of environmental impacts on groundwater tables and vegetation, avulsions thus affect the heterogeneity of floodbasin facies.


Springer Geology | 2014

The Transgressive Early–Middle Holocene Boundary: The Case for a GSSP at Rotterdam, Rhine Delta, North Sea Basin

K.M. Cohen; Marc P. Hijma

Postglacial sea-level rise at the start of the Holocene continued to drown continental shelves around the world. By the early–middle Holocene transition, deltas and other coastal systems had begun to stabilize their positions, which have since been maintained. The last major acceleration of sea-level rise occurred between 8.5 and 8.2 ka, due to the largest meltwater pulse from a single source area, released from the thawing Laurentian ice sheet in the Hudson Bay area. This event left a marked transgressive impact on river-mouth sedimentary sequences around the globe, exemplified in the Rhine Delta (North Sea, The Netherlands) from boreholes and underground exposures in the city of Rotterdam and its megaharbour. What ended as the 8.2 ka climatic event actually began as a freshwater release at ~8.45 ka: it should therefore be properly regarded as an 8.5–8.2 ka event. In contrast to the 8.2 ka climatic event, which was temporary, globally highly variable, and commonly insignificantly registered, and which only indirectly affected sedimentation, the sea-level imprint of the freshwater release was permanent, circumoceanic, and predictably spatially variable, and had direct impacts on sedimentation on both sides of the migrating coastline. Consequently, the water release left lithostratigraphic- and environmental-event boundaries in coastal sequences around the world, in the zone where Holocene accumulations are thickest and functional subdivision is architecturally most important. For these reasons, the sea-level signal of the 8.5–8.2 ka event should be considered as the beginning of a formalized Middle Holocene, and not the somewhat-later 8.2 ka cold spell maximum over Greenland, as is currently being proposed elsewhere. In that context, the transgressive contact found at the base of the Rhine Delta at Rotterdam is presented as a potential GSSP (8450 ± 44 cal BP).


Earth Surface Processes and Landforms | 2018

Applying Pattern Oriented Sampling in current fieldwork practice to enable more effective model evaluation in fluvial landscape evolution research

Rebecca M. Briant; K.M. Cohen; Stéphane Cordier; Alain Demoulin; Mark G. Macklin; Anne E. Mather; Gilles Rixhon; A. Veldkamp; John Wainwright; Alexander C. Whittaker; H Wittmann

Field geologists and geomorphologists are increasingly looking to numerical modelling to understand landscape change over time, particularly in river catchments. The application of landscape evolution models (LEMs) started with abstract research questions in synthetic landscapes. Now, however, studies using LEMs on real-world catchments are becoming increasingly common. This development has philosophical implications for model specification and evaluation using geological and geomorphological data, besides practical implications for fieldwork targets and strategy. The type of data produced to drive and constrain LEM simulations has very little in common with that used to calibrate and validate models operating over shorter timescales, making a new approach necessary. Here we argue that catchment fieldwork and LEM studies are best synchronized by complementing the Pattern Oriented Modelling (POM) approach of most fluvial LEMs with Pattern Oriented Sampling (POS) fieldwork approaches. POS can embrace a wide range of field data types, without overly increasing the burden of data collection. In our approach, both POM output and POS field data for a specific catchment are used to quantify key characteristics of a catchment. These are then compared to provide an evaluation of the performance of the model. Early identification of these key characteristics should be undertaken to drive focused POS data collection and POM model specification. Once models are evaluated using this POM/POS approach, conclusions drawn from LEM studies can be used with greater confidence to improve understanding of landscape change.

Collaboration


Dive into the K.M. Cohen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Wallinga

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Freek S. Busschers

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Kasse

VU University Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge