K. Muszka
AGH University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by K. Muszka.
INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS AND PROCESSING TECHNOLOGIES (AMPT2010) | 2011
Dmytro Svyetlichnyy; J. Majta; K. Muszka; Łukasz Łach
Prediction of microstructure evolution and properties of ultrafine‐grained materials is one of the most significant, current problems in materials science. Several advanced methods of analysis can be applied for this issue: vertex models, phase field models, Monte Carlo Potts, finite element method (FEM) discrete element method (DEM) and finally cellular automata (CA). The main asset of the CA is ability for a close correlation of the microstructure with the mechanical properties in micro‐ and meso‐scale simulation. Joining CA with the DEM undoubtedly improves accuracy of modeling of coupled phenomena during the innovative forming processes in both micro‐ and macro‐scale. Deformation in micro‐scale shows anisotropy, which connected with that the polycrystalline material contains grains with different crystallographic orientation, and grain deformation is depended from configuration of directions of main stresses and axis of grain. Then, CA and DEM must be joint solutions of crystal plasticity theory. In t...
Materials Science Forum | 2012
Lin Sun; K. Muszka; Bradley P. Wynne; Eric J. Palmiere
In the present study, monotonic and cyclical torsional deformations of an X-70 microalloyed steel were conducted at austenite temperatures below the recrystallisation-stop temperature (T5%). The austenite deformation is followed by accelerated continuous cooling to allow the investigation of the strain reversal effect on the subsequent phase transformation mechanisms. The transformation behaviours were studied by a dilatometry method, and the microstructures of the transformed products have been analysed using electron back scatter diffraction (EBSD). The results of this study shows that although subjected to the same total cumulative strain and the same cooling rate, strain path reversal by cyclical torsion produces lower temperature transformation products involving mainly a displacive mechanism, comparing to simple strain path deformation which leads to higher temperature transformation by a reconstructive mechanism.
Materials Science Forum | 2012
K. Muszka; Lin Sun; Bradley P. Wynne; Eric J. Palmiere; W.M. Rainforth
Recent observations show that the strain reversal affects significantly and in a complex way both the static recrystallisation (SRX) and strain-induced precipitation (PPT) kinetics in Nb-microalloyed steel. It is already known that the recrystallisation stagnation is a consequence of the competition between the driving pressure for recrystallisation and the pinning pressure caused by the strain-induced precipitation of Nb (C,N) precipitates. Both of these parameters depend in turn on the local dislocation density. Thus, it is expected that a variation of the local dislocation density due to reversal of the strain will affect at the same time the local driving and the pinning pressures, which will cause the difference in the hardening levels. In the present paper, the influence of strain path change on microstructure evolution and mechanical behaviour in Nb-microalloyed steel (API X-70 grade) was studied. The deformation schedules were designed in order to investigate an effect of strain reversal on both static recrystallisation and strain-induced precipitation process kinetics. Flow curves recorded during deformation of X-70 steel showed clear influence of applied strain path on both static recrystallisation kinetics and strain-induced precipitation process.
Key Engineering Materials | 2014
K. Muszka; Paulina Graca; T.H. Simm; Eric J. Palmiere
In the present work cyclic torsion test was used to simulate hot plate rolling process in order to study the effect of strain reversal on non-recrystallisation temperature using unalloyed and microalloyed austenite model alloys. It was found that the amount of strain reversal directly influences both static recrystallisation and strain-induced precipitation process significantly delaying their kinetics. The proper assessment of the interactions between strain reversal and microstructure evolution plays a crucial role during hot rolling process - as continuous changes in the deformation mode (strain reversal) affect the level of redundant strain (in the areas near the surface of the stock) and lead to strain inhomogeneity across the plate thickness. This complex strain path introduces microstructural inhomogeneity and makes its predictions very difficult. Proper understanding of the effects of strain reversal on microstructure evolution in the austenite will help to optimise the hot rolling process.
Materials Science Forum | 2010
K. Muszka; M. Wielgus; J. Majta; K. Doniec; Monika Stefanska-Kadziela
Cold drawn low carbon steel wires are widely used in several engineering applications where a proper combination of strength and ductility is of the paramount importance. In the present paper, the multi-pass angular accumulative drawing (AAD) is proposed as a new forming process where the high strain accumulation is used as a way to achieve much higher microstructure refinement level compared to the conventional wire drawing process. This process is characterized by a complex strain path history, being an effect of wire diameter reduction, bending, tension and torsion, what directly affects the microstructure changes in the final product. This process also evolves high inhomogeneity of microstructure, that if properly controlled, can lead to further properties improvement - what can be especially beneficial for alloys that are not characterized by complex compositions. In the present paper, special emphasis is given on the inhomogeneity of both deformation and microstructure and resulted mechanical properties. After drawing and annealing (at 500oC) mechanical properties measurements and microstructure analysis on the longitudinal sections of the wires were performed to assess the differences existing with respect to the conventional wire drawing process.
Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science | 2014
Lin Sun; K. Muszka; Bradley P. Wynne; E.J. Palmiere
The effect of simple strain path changes as well as post-deformation continuous cooling rate during thermomechanical-controlled processing of microalloyed steel was studied using laboratory physical simulation. The phase transformation characteristics were directly analyzed by dilatometry under various cooling rates. The microstructures of the transformation products were characterized quantitatively using EBSD. The results have shown that while strain path changes impose a considerable influence on the hot flow behavior of the austenite, the cooling rate following hot deformation is the determining factor of the phase transformation mechanism and behavior which establishes the final transformation products and subsequent mechanical properties.
Key Engineering Materials | 2014
J. Majta; K. Muszka; Marcin Kwiecień; Monika Stefanska-Kadziela; Paulina Graca
Studies of the effects of inhomogeneity of UFG (ultrafine-grained) microstructure evolution have been performed on severely deformed specimens produced by AAD (angular accumulative drawing), followed by wire drawing and wire flattening processes i.e. “top-down” systems of the grain refinement process. In this paper, deformation behavior and size effects are illustrated by means of UFG microalloyed steel with different combinations of microstructure length scale and deformation inhomogeneity. The refined and severely elongated structures were investigated by light microscopy, TEM and EBSD. Of particular importance was the understanding of the effects of strain path, microalloying elements and deformation inhomogeneity on grain refinement and dislocation substructure formation processes.
Journal of Materials Science | 2017
Lin Sun; K. Muszka; Bradley P. Wynne; E.J. Palmiere
In the present work, the effect of strain path reversals on dynamic transformation (DT) above Ae3 temperature was studied using an API grade X-70 microalloyed steel deformed by torsion with single and multiple strain path reversals. The results revealed the important role played by strain path reversals on influencing the evolution of austenite grain boundaries through inhomogeneous deformation, therefore, affecting DT behaviours. In addition to flow stress–strain analysis and microstructure investigation, finite element method combined with 3D digital materials representation approach was used to gain insights into the effects of deformation with strain path reversals on the development of microstructural features in the prior-austenite grains.
Key Engineering Materials | 2014
Paulina Graca; K. Muszka; J. Majta; Monika Stefanska-Kadziela; Dominik Dziedzic; Marcin Kwiecień
Microalloyed steels have been the subject of theoretical and experimental studies revealing their exceptional mechanical response under nonlinear deformation conditions. In microalloyed steels, especially in multiphase steels, the mechanical properties are adjusted by combination of microstructure components with different levels of theirs mechanical responses, including hardness and ductility. A comprehensive studies have revealed that a transition from the development of usual bulk dislocation microstructures to more architecture ones occurs when the applied strain path allows to cumulate the deformation energy what is also strictly connected with the chemical and structural compositions of analyzed materials. The study presented here aims at understanding the complex strengthening mechanisms as well as microstructure evolution and to provide a link with the mechanical behaviour of investigated steels under nonlinear deformation conditions. The proper choice of the work hardening model for the cyclic plastic deformation is essential for predicting the inhomogeneities occurring during metal forming. Aim of the current work is to discuss the differences between various hardening models with respect to their capabilities in capturing complex deformation models and possibilities of their direct application to finite element modelling of such deformation processes. The results of experimental studies are integrated with computer modelling and dislocation theory to provide insight into the unprecedented combination of properties achieved in certain multiphase steels such as ultra-high flow strengths, good ductility and workability. Finally, based upon results obtained in performed computer simulations, conclusions regarding the possibilities of potential application of the work hardening models in the identification process parameters, trough the inverse analysis, are drawn.
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF GLOBAL NETWORK FOR INNOVATIVE TECHNOLOGY AND AWAM INTERNATIONAL CONFERENCE IN CIVIL ENGINEERING (IGNITE-AICCE’17): Sustainable Technology And Practice For Infrastructure and Community Resilience | 2017
Joanna Szyndler; Laurent Delannay; K. Muszka; Lukasz Madej
Development of the 2D concurrent multiscale numerical model of novel incremental forming (IF) process is the main aim of the paper. The IF process is used to obtain light and durable integral parts, especially useful in aerospace or automotive industries. Particular attention in the present work is put on numerical investigation of material behavior at both, macro and micro scale levels. A Finite Element Method (FEM) supported by Digital Material Representation (DMR) concept is used during the investigation. Also, the Crystal Plasticity (CP) theory is applied to describe material flow at the grain level. Examples of obtained results both from the macro and micro scales are presented in the form of strain distributions, grain shapes and pole figures at different process stages. Moreover, Electron Backscatter Diffraction (EBSD) analysis is used to obtain detailed information regarding material morphology changes during the incremental forming for the comparison purposes.