K. Pavasuthipaisit
Mahidol University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by K. Pavasuthipaisit.
Cloning and Stem Cells | 2001
Yindee Kitiyanant; Jumnian Saikhun; Busabun Chaisalee; Kenneth L. White; K. Pavasuthipaisit
Successful nuclear transfer (NT) of somatic cell nuclei from various mammalian species to enucleated bovine oocytes provides a universal cytoplast for NT in endangered or extinct species. Buffalo fetal fibroblasts were isolated from a day 40 fetus and were synchronized in presumptive G(0) by serum deprivation. Buffalo and bovine oocytes from abattoir ovaries were matured in vitro and enucleated at 22 h. In the first experiment, we compared the ability of buffalo and bovine oocyte cytoplasm to support in vitro development of NT embryos produced by buffalo fetal fibroblasts as donor nuclei. There were no significant differences (p > 0.05) between the NT embryos derived from buffalo and bovine oocytes, in fusion (74% versus 71%) and cleavage (77% versus 75%) rates, respectively. No significant differences were also observed in blastocyst development (39% versus 33%) and the mean cell numbers of day 7 cloned blastocysts (88.5 +/- 25.7 versus 51.7 +/- 5.4). In the second experiment, we evaluated the effects of activation with calcium ionophore A23187 on development of NT embryos after electrical fusion. A significantly higher (p < 0.05) percentage of blastocyst development was observed in the NT embryos activated by calcium ionophore and 6-DMAP when compared with 6-DMAP alone (33% versus 17%). The results indicate that the somatic nuclei from buffalo can be reprogrammed after transfer to enucleated bovine oocytes, resulting in the production of cloned buffalo blastocysts similar to those transferred into buffalo oocytes. Calcium ionophore used in conjunction with 6-DMAP effectively induces NT embryo development.
Theriogenology | 2003
Yindee Kitiyanant; Jumnian Saikhun; K. Pavasuthipaisit
Oocyte maturation and somatic cell nuclear transfer (NT) studies conducted in the domestic cat can provide valuable insights that are relevant to the conservation of endangered species of felids. The present investigation focuses on the in vitro maturation (IVM) of domestic cat oocytes stimulated by insulin-like growth factor-I (IGF-I) and their possible use as recipient cytoplasts for somatic cell NT. In Experiment I, the effects of IGF-I on cat oocyte IVM were monitored. Cumulus-oocyte complexes (COCs) were recovered in TALP-HEPES medium following ovarian follicular aspiration and were classified under a stereomicroscope into four grades using criteria based on cumulus cell investment and the uniformity of ooplasm. The COCs were either cultured in Dulbeccos modified Eagle medium (DMEM) alone as a control group or supplemented with 100 ng/ml IGF-I. After culturing for 32-34 h, oocytes were denuded and maturation rate was evaluated by observing the extrusion of the first polar body and staining with aceto-orcein. The percentages of maturation of Grades 1 and 2 oocytes were significantly increased (P<0.05) in IGF-I supplemented medium compared with medium alone (85.8 versus 65.5 and 70.3 versus 51.8, respectively) whereas the maturation rates of Grades 3 and 4 oocytes were not different. The IVM of Grade 1 oocytes was significantly higher (P<0.05) than for all other grades in both control and experimental groups. In Experiment II, the in vitro development of cat NT embryos using cumulus cells, fetal or adult fibroblasts as donor nuclei was investigated. The IVM oocytes in medium containing IGF-I were enucleated and fused with cumulus cells, fetal or adult fibroblasts between passages 2 and 4 of culture. Reconstructed embryos were cultured and monitored every 24h for progression of development through Day 9. There was no significant difference in the percentage of fusion of NT embryos using different donor nuclei whereas the cleavage rates of NT embryos reconstructed with fetal fibroblasts and cumulus cells were significantly higher (P<0.05) than those reconstructed with adult fibroblasts (72.5 and 70.7% versus 54.8%, respectively). Development of NT embryos reconstructed with adult fibroblast to the morula stage was significantly lower (P<0.05) compared with cumulus cell or fetal fibroblast donor cells (25.8% versus 37.9 or 47.5%, respectively). However, no difference was observed in development to the blastocyst stage. These results demonstrated that IGF-I promoted the IVM of domestic cat oocytes. The enucleated IVM oocytes could be used as recipient cytoplasm for fetal and adult somatic cell nuclei resulting in the production of cloned cat embryos.
Theriogenology | 2002
Jumnian Saikhun; K. Pavasuthipaisit; Mayurachat Jaruansuwan; Yindee Kitiyanant
Bovine oocyte cytoplasm has been shown to support the development of nuclei from other species up to the blastocyst stage. Somatic cell nuclei from buffalo fetal fibroblasts have been successfully reprogrammed after transfer to enucleated bovine oocytes, resulting in the production of cloned buffalo blastocysts. The aim of this study was to compare the in vitro development of fetal and adult buffalo cloned embryos after the fusion of a buffalo fetal fibroblast, cumulus or oviductal cell with bovine oocyte cytoplasm. The fusion of oviductal cells with enucleated bovine oocytes was higher than that of fetal fibroblasts or cumulus cells (83% versus 77 or 73%, respectively). There was a significantly higher cleavage rate (P < 0.05) for fused nuclear transferred embryos produced by fetal fibroblasts and oviductal cells than for cumulus cells (84 or 78% versus 68%, respectively). Blastocyst development in the nuclear transferred embryos produced by fetal fibroblasts was higher (P < 0.05) than those produced either by cumulus or oviductal cells. Chromosome analysis of cloned blastocysts confirmed the embryo was derived from buffalo donor nuclei. This study demonstrates that nuclei from buffalo fetal cells could be successfully reprogrammed to develop to the blastocyst stage at a rate higher than nuclei from adult cells.
Theriogenology | 2000
Yindee Kitiyanant; M.J. Schmidt; K. Pavasuthipaisit
This study focuses on the effect of chemicals on acrosome reaction in elephant spermatozoa. Semen was collected at the Washington Park Zoo in Portland, Oregon, from an 11-yr-old Asian elephant by artificial vagina (7 ejaculates) and transported to Mahidol University in Bangkok in extender at 4 to 5 degrees C within 24 to 28 h. A total of 500 x 10(6) sperm/mL was used for the control and for each of the 4 treatment groups: 1) cAMP (0.1 mM); 2) caffeine (0.1 mM); 3) Penicillamine hypotaurine and epinephine, PHE (penicillamine 2 mM, hypotaurine 1 mM, epinephine 1 mM); and 4) heparin (10 microg/mL) at 39 degrees C for 2 h. Aliquots were removed and the sperm viability, abnormal morphology, and acrosome status were evaluated by triple stain technique. Transmission electron microscopy (TEM) was used to observe changes of the sperm head membrane in all treatment groups. Trypan blue reliably stained dead spermatozoa, while rose Bengal stained only the spermatozoa with intact acrosomes. The concentration of dead sperm cells was similar in the 4 groups. The percentages of live acrosome-reacted spermatozoa in the control and in groups treated with caffeine, PHE, cAMP and heparin were 19.5 +/- 4.3, 38.1 +/- 4.0, 34.8 +/- 3.7, 29.8 +/- 0.8 and 28.0 +/- 4.2, respectively. The acrosome reaction rate was higher in the treatment groups than in the control (P<0.05). Caffeine and PHE caused significantly higher acrosome reaction of the sperm head than cAMP or heparin (P<0.05). The electron micrographs showed that the acrosome reaction occurred by the presence of apical vesiculation. The results indicated that 1) the triple stain technique allowed for evaluation of both viability and acrosome reaction simultaneously in elephant spermatozoa,2) acrosome reaction occurred at a high rate in all 3 treatment groups. 3) the effects of caffeine and PHE were significantly higher (P<0.05) than of cAMP and heparin, and 4) the data obtained from the triple stain technique corresponded to those from TEM.
Theriogenology | 1993
K. Pavasuthipaisit; S. Lhuangmahamongkol; C. Tocharus; Yindee Kitiyanant; P. Prempree
This study was designed to investigate the developmental competency of in vitro-matured and in vitro-fertilized bovine embryos co-cultured with a) medium alone, b) bovine oviductal cells (BOC), c) bovine conditioned medium (BCM), d) porcine oviductal cells (POC), and porcine conditioned medium (PCM). Follicular oocytes collected from cattle at local slaughterhouses were matured and fertilized in vitro. Epithelial cells were scraped from the luminal surface tissue of either bovine or porcine oviducts collected after ovulation, cultured in TALP + 10% heat-treated fetal calf serum, and the conditioned media were collected following a 3- to 5-d incubation period. After 18 to 22 h of sperm-ova co-incubation, the fertilized and/or cleaved ova were randomly assigned to 1 of 5 co-culture groups. The results revealed that the efficiency of medium alone in supporting embryo development from the 16- to 32-cell stage up to the blastocyst stage was significantly (P<0.01) lower than of embryos co-cultured with either bovine or porcine epithelial cells, or with conditioned media from such cells. Epithelial cell co-culture, regardless of cell source, was more effective (P<0.01) than culture with conditioned medium. Co-culture in medium containing or conditioned by porcine cells was more effective in supporting bovine embryo development than co-culture with bovine-derived cells or conditioned medium. These data support the concept that oviductal cells produce a soluble component which enhances embryo development to the blastocyst stage in vitro and that the effect is not species-specific.
Theriogenology | 1992
K. Pavasuthipaisit; Yindee Kitiyanant; C. Thonabulsombat; C. Tocharus; S. Sriurairatna; Kenneth L. White
The present experiment was carried out to evaluate the maturation, fertilization and subsequent embryo culture of swamp buffalo oocytes in vitro. The oocytes (n=273) were collected and morphologically graded based on the structure of cumulus-oocyte complexes as Grade 1 (compact, n=81), Grade 2 (expanded, n=70), Grade 3 (partially denuded, n=65) or Grade 4 (completely denuded, n=57). More than 60% of the in vitro matured oocytes co-cultured with capacitated spermatozoa demonstrated evidence of fertilization or cleavage to the 2-cell stage when either Grade 1 or 2 oocytes were used. The percentage of fertilized oocytes undergoing 2-cell stage cleavages from Grade 3 (53%) and Grade 4 (46%) groups was significantly lower (P<0.01) than that observed in the Grade 1 (64%) and Grade 2 (68%) groups. Development to the 6 to 8 cell stage substantiated fertilization of Grade 1 and 2 oocytes. These results demonstrated that swamp buffalo oocytes are capable of maturing in vitro, forming embryos, and developing at least to the 8-cell stage in culture medium alone.
Molecular Reproduction and Development | 2007
Hathaitip Sritanaudomchai; K. Pavasuthipaisit; Yindee Kitiyanant; Piengchai Kupradinun; Shoukhrat Mitalipov; Thanit Kusamran
Reproduction Nutrition Development | 2004
Jumnian Saikhun; Narisorn Kitiyanant; Chanchai Songtaveesin; K. Pavasuthipaisit; Yindee Kitiyanant
International Journal of Andrology | 2006
M. Sa-Ardrit; Jumnian Saikhun; Nikorn Thongtip; M. Damyang; Sittidet Mahasawangkul; Taweepoke Angkawanish; Sarun Jansittiwate; T. Faisaikarm; Yindee Kitiyanant; K. Pavasuthipaisit; Anuchai Pinyopummin
Theriogenology | 2004
Nikorn Thongtip; Jumnian Saikhun; Mangkorn Damyang; Sittidet Mahasawangkul; Piyawan Suthunmapinata; Manoch Yindee; Apisek Kongsila; Tawepoke Angkawanish; Sarun Jansittiwate; Waroot Wongkalasin; Worawidh Wajjwalkul; Yindee Kitiyanant; K. Pavasuthipaisit; Anuchai Pinyopummin