Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where K. Pfafferott is active.

Publication


Featured researches published by K. Pfafferott.


Nature Medicine | 2004

HIV evolution: CTL escape mutation and reversion after transmission

Alasdair Leslie; K. Pfafferott; P Chetty; Rika Draenert; M. M. Addo; Margaret E. Feeney; Yanhua Tang; Edward C. Holmes; Todd M. Allen; J G Prado; Marcus Altfeld; Christian Brander; C Dixon; D Ramduth; P Jeena; S A Thomas; A St John; Timothy Roach; B Kupfer; Graz Luzzi; Anne Edwards; G Taylor; H Lyall; Gareth Tudor-Williams; Vas Novelli; J Martinez-Picado; Photini Kiepiela; Bruce D. Walker; Philip J. R. Goulder

Within-patient HIV evolution reflects the strong selection pressure driving viral escape from cytotoxic T-lymphocyte (CTL) recognition. Whether this intrapatient accumulation of escape mutations translates into HIV evolution at the population level has not been evaluated. We studied over 300 patients drawn from the B- and C-clade epidemics, focusing on human leukocyte antigen (HLA) alleles HLA-B57 and HLA-B5801, which are associated with long-term HIV control and are therefore likely to exert strong selection pressure on the virus. The CTL response dominating acute infection in HLA-B57/5801-positive subjects drove positive selection of an escape mutation that reverted to wild-type after transmission to HLA-B57/5801-negative individuals. A second escape mutation within the epitope, by contrast, was maintained after transmission. These data show that the process of accumulation of escape mutations within HIV is not inevitable. Complex epitope- and residue-specific selection forces, including CTL-mediated positive selection pressure and virus-mediated purifying selection, operate in tandem to shape HIV evolution at the population level.


Nature | 2004

Dominant influence of HLA-B in mediating the potential co-evolution of HIV and hla

Photini Kiepiela; Alasdair Leslie; Isobella Honeyborne; Danni Ramduth; Christina Thobakgale; Senica Chetty; Prinisha Rathnavalu; C. Moore; K. Pfafferott; Louise Hilton; Peter Zimbwa; Sarah Moore; Todd M. Allen; Christian Brander; Marylyn M. Addo; Marcus Altfeld; I. James; S. Mallal; Michael Bunce; Linda Barber; James Szinger; Cheryl L. Day; Paul Klenerman; James I. Mullins; Bette Korber; Hoosen Mohamed Coovadia; Bruce D. Walker; Philip J. R. Goulder

The extreme polymorphism in the human leukocyte antigen (HLA) class I region of the human genome is suggested to provide an advantage in pathogen defence mediated by CD8+ T cells. HLA class I molecules present pathogen-derived peptides on the surface of infected cells for recognition by CD8+ T cells. However, the relative contributions of HLA-A and -B alleles have not been evaluated. We performed a comprehensive analysis of the class I restricted CD8+ T-cell responses against human immunodeficiency virus (HIV-1), immune control of which is dependent upon virus-specific CD8+ T-cell activity. In 375 HIV-1-infected study subjects from southern Africa, a significantly greater number of CD8+ T-cell responses are HLA-B-restricted, compared to HLA-A (2.5-fold; P = 0.0033). Here we show that variation in viral set-point, in absolute CD4 count and, by inference, in rate of disease progression in the cohort, is strongly associated with particular HLA-B but not HLA-A allele expression (P < 0.0001 and P = 0.91, respectively). Moreover, substantially greater selection pressure is imposed on HIV-1 by HLA-B alleles than by HLA-A (4.4-fold, P = 0.0003). These data indicate that the principal focus of HIV-specific activity is at the HLA-B locus. Furthermore, HLA-B gene frequencies in the population are those likely to be most influenced by HIV disease, consistent with the observation that B alleles evolve more rapidly than A alleles. The dominant involvement of HLA-B in influencing HIV disease outcome is of specific relevance to the direction of HIV research and to vaccine design.


Journal of Virology | 2006

Fitness Cost of Escape Mutations in p24 Gag in Association with Control of Human Immunodeficiency Virus Type 1

Javier Martinez-Picado; Julia G. Prado; Elizabeth E. Fry; K. Pfafferott; Alasdair Leslie; Senica Chetty; Christina Thobakgale; Isobel Honeyborne; Hayley Crawford; Philippa C. Matthews; Tilly Pillay; Christine Rousseau; James I. Mullins; Christian Brander; Bruce D. Walker; David I. Stuart; Photini Kiepiela; Philip J. R. Goulder

ABSTRACT Mutational escape by human immunodeficiency virus (HIV) from cytotoxic T-lymphocyte (CTL) recognition is a major challenge for vaccine design. However, recent studies suggest that CTL escape may carry a sufficient cost to viral replicative capacity to facilitate subsequent immune control of a now attenuated virus. In order to examine how limitations can be imposed on viral escape, the epitope TSTLQEQIGW (TW10 [Gag residues 240 to 249]), presented by two HLA alleles associated with effective control of HIV, HLA-B*57 and -B*5801, was investigated. The in vitro experiments described here demonstrate that the dominant TW10 escape mutation, T242N, reduces viral replicative capacity. Structural analysis reveals that T242 plays a critical role in defining the start point and in stabilizing helix 6 within p24 Gag, ensuring that escape occurs at a significant cost. A very similar role is played by Thr-180, which is also an escape residue, but within a second p24 Gag epitope associated with immune control. Analysis of HIV type 1 gag in 206 B*57/5801-positive subjects reveals three principle alternative TW10-associated variants, and each is strongly linked to concomitant additional variants within p24 Gag, suggesting that functional constraints operate against their occurrence alone. The extreme conservation of p24 Gag and the predictable nature of escape variation resulting from these tight functional constraints indicate that p24 Gag may be a critical immunogen in vaccine design and suggest novel vaccination strategies to limit viral escape options from such epitopes.


Nature | 2009

Adaptation of HIV-1 to human leukocyte antigen class I

Y Kawashima; K. Pfafferott; John Frater; Philippa C. Matthews; Rebecca Payne; M. M. Addo; Hiroyuki Gatanaga; Mamoru Fujiwara; Atsuko Hachiya; Hirokazu Koizumi; Nozomi Kuse; Shinichi Oka; Anna Duda; Andrew J. Prendergast; Hayley Crawford; A Leslie; Zabrina L. Brumme; Chanson J. Brumme; Todd M. Allen; Christian Brander; Richard A. Kaslow; Jianming Tang; Eric Hunter; Susan Allen; Joseph Mulenga; S. Branch; T Roach; M. John; S. Mallal; Anthony Ogwu

The rapid and extensive spread of the human immunodeficiency virus (HIV) epidemic provides a rare opportunity to witness host–pathogen co-evolution involving humans. A focal point is the interaction between genes encoding human leukocyte antigen (HLA) and those encoding HIV proteins. HLA molecules present fragments (epitopes) of HIV proteins on the surface of infected cells to enable immune recognition and killing by CD8+ T cells; particular HLA molecules, such as HLA-B*57, HLA-B*27 and HLA-B*51, are more likely to mediate successful control of HIV infection. Mutation within these epitopes can allow viral escape from CD8+ T-cell recognition. Here we analysed viral sequences and HLA alleles from >2,800 subjects, drawn from 9 distinct study cohorts spanning 5 continents. Initial analysis of the HLA-B*51-restricted epitope, TAFTIPSI (reverse transcriptase residues 128–135), showed a strong correlation between the frequency of the escape mutation I135X and HLA-B*51 prevalence in the 9 study cohorts (P = 0.0001). Extending these analyses to incorporate other well-defined CD8+ T-cell epitopes, including those restricted by HLA-B*57 and HLA-B*27, showed that the frequency of these epitope variants (n = 14) was consistently correlated with the prevalence of the restricting HLA allele in the different cohorts (together, P < 0.0001), demonstrating strong evidence of HIV adaptation to HLA at a population level. This process of viral adaptation may dismantle the well-established HLA associations with control of HIV infection that are linked to the availability of key epitopes, and highlights the challenge for a vaccine to keep pace with the changing immunological landscape presented by HIV.


Journal of Experimental Medicine | 2004

Immune Selection for Altered Antigen Processing Leads to Cytotoxic T Lymphocyte Escape in Chronic HIV-1 Infection

Rika Draenert; Sylvie Le Gall; K. Pfafferott; Alasdair Leslie; Polan Chetty; Christian Brander; Edward C. Holmes; Shih-Chung Chang; Margaret E. Feeney; Marylyn M. Addo; Lidia Ruiz; Danni Ramduth; Prakash Jeena; Marcus Altfeld; Stephanie R. Thomas; Yanhua Tang; Cori L. Verrill; Catherine Dixon; Julia G. Prado; Photini Kiepiela; Javier Martinez-Picado; Bruce D. Walker; Philip J. R. Goulder

Mutations within cytotoxic T lymphocyte (CTL) epitopes impair T cell recognition, but escape mutations arising in flanking regions that alter antigen processing have not been defined in natural human infections. In human histocompatibility leukocyte antigen (HLA)-B57+ HIV-infected persons, immune selection pressure leads to a mutation from alanine to proline at Gag residue 146 immediately preceding the NH2 terminus of a dominant HLA-B57–restricted epitope, ISPRTLNAW. Although N-extended wild-type or mutant peptides remained well-recognized, mutant virus–infected CD4 T cells failed to be recognized by the same CTL clones. The A146P mutation prevented NH2-terminal trimming of the optimal epitope by the endoplasmic reticulum aminopeptidase I. These results demonstrate that allele-associated sequence variation within the flanking region of CTL epitopes can alter antigen processing. Identifying such mutations is of major relevance in the construction of vaccine sequences.


Journal of Experimental Medicine | 2005

Transmission and accumulation of CTL escape variants drive negative associations between HIV polymorphisms and HLA

Alasdair Leslie; Daniel G. Kavanagh; Isobella Honeyborne; K. Pfafferott; Charles Edwards; Tilly Pillay; Louise Hilton; Christina Thobakgale; Danni Ramduth; Rika Draenert; Sylvie Le Gall; Graz Luzzi; Anne Edwards; Christian Brander; Andrew K. Sewell; Sarah Moore; James I. Mullins; C. Moore; S. Mallal; Nina Bhardwaj; Karina Yusim; Rodney E. Phillips; Paul Klenerman; Bette T. Korber; Photini Kiepiela; Bruce D. Walker; Philip J. R. Goulder

Human immunodeficiency virus (HIV)-1 amino acid sequence polymorphisms associated with expression of specific human histocompatibility leukocyte antigen (HLA) class I alleles suggest sites of cytotoxic T lymphocyte (CTL)-mediated selection pressure and immune escape. The associations most frequently observed are between expression of an HLA class I molecule and variation from the consensus sequence. However, a substantial number of sites have been identified in which particular HLA class I allele expression is associated with preservation of the consensus sequence. The mechanism behind this is so far unexplained. The current studies, focusing on two examples of “negatively associated” or apparently preserved epitopes, suggest an explanation for this phenomenon: negative associations can arise as a result of positive selection of an escape mutation, which is stable on transmission and therefore accumulates in the population to the point at which it defines the consensus sequence. Such negative associations may only be in evidence transiently, because the statistical power to detect them diminishes as the mutations accumulate. If an escape variant reaches fixation in the population, the epitope will be lost as a potential target to the immune system. These data help to explain how HIV is evolving at a population level. Understanding the direction of HIV evolution has important implications for vaccine development.


Hepatology | 2009

Hepatitis C virus drug resistance and immune-driven adaptations: Relevance to new antiviral therapy†

Silvana Gaudieri; Andri Rauch; K. Pfafferott; Eleanor Barnes; Wendy Cheng; G. McCaughan; Nicholas A. Shackel; Gary P. Jeffrey; Lindsay Mollison; Ross Baker; Hansjakob Furrer; Huldrych F. Günthard; Elizabeth Freitas; Isla Humphreys; Paul Klenerman; S. Mallal; I. James; Stuart K. Roberts; D. Nolan; Michaela Lucas

The efficacy of specifically targeted anti‐viral therapy for hepatitis C virus (HCV) (STAT‐C), including HCV protease and polymerase inhibitors, is limited by the presence of drug‐specific viral resistance mutations within the targeted proteins. Genetic diversity within these viral proteins also evolves under selective pressures provided by host human leukocyte antigen (HLA)‐restricted immune responses, which may therefore influence STAT‐C treatment response. Here, the prevalence of drug resistance mutations relevant to 27 developmental STAT‐C drugs, and the potential for drug and immune selective pressures to intersect at sites along the HCV genome, is explored. HCV nonstructural (NS) 3 protease or NS5B polymerase sequences and HLA assignment were obtained from study populations from Australia, Switzerland, and the United Kingdom. Four hundred five treatment‐naïve individuals with chronic HCV infection were considered (259 genotype 1, 146 genotype 3), of which 38.5% were coinfected with human immunodeficiency virus (HIV). We identified preexisting STAT‐C drug resistance mutations in sequences from this large cohort. The frequency of the variations varied according to individual STAT‐C drug and HCV genotype/subtype. Of individuals infected with subtype 1a, 21.5% exhibited genetic variation at a known drug resistance site. Furthermore, we identified areas in HCV protease and polymerase that are under both potential HLA‐driven pressure and therapy selection and identified six HLA‐associated polymorphisms (P ≤ 0.05) at known drug resistance sites. Conclusion: Drug and host immune responses are likely to provide powerful selection forces that shape HCV genetic diversity and replication dynamics. Consideration of HCV viral adaptation in terms of drug resistance as well as host “immune resistance” in the STAT‐C treatment era could provide important information toward an optimized and individualized therapy for chronic hepatitis C. (HEPATOLOGY 2009.)


Retrovirology | 2013

Relative resistance of HIV-1 founder viruses to control by interferon-alpha

Angharad E. Fenton-May; Oliver Dibben; Tanja Emmerich; Haitao Ding; K. Pfafferott; Marlén M. I. Aasa-Chapman; Pierre Pellegrino; Ian Williams; Myron S. Cohen; Feng Gao; George M. Shaw; Beatrice H. Hahn; Christina Ochsenbauer; John C. Kappes; Persephone Borrow

BackgroundFollowing mucosal human immunodeficiency virus type 1 (HIV-1) transmission, type 1 interferons (IFNs) are rapidly induced at sites of initial virus replication in the mucosa and draining lymph nodes. However, the role played by IFN-stimulated antiviral activity in restricting HIV-1 replication during the initial stages of infection is not clear. We hypothesized that if type 1 IFNs exert selective pressure on HIV-1 replication in the earliest stages of infection, the founder viruses that succeed in establishing systemic infection would be more IFN-resistant than viruses replicating during chronic infection, when type 1 IFNs are produced at much lower levels. To address this hypothesis, the relative resistance of virus isolates derived from HIV-1-infected individuals during acute and chronic infection to control by type 1 IFNs was analysed.ResultsThe replication of plasma virus isolates generated from subjects acutely infected with HIV-1 and molecularly cloned founder HIV-1 strains could be reduced but not fully suppressed by type 1 IFNs in vitro. The mean IC50 value for IFNα2 (22 U/ml) was lower than that for IFNβ (346 U/ml), although at maximally-inhibitory concentrations both IFN subtypes inhibited virus replication to similar extents. Individual virus isolates exhibited differential susceptibility to inhibition by IFNα2 and IFNβ, likely reflecting variation in resistance to differentially up-regulated IFN-stimulated genes. Virus isolates from subjects acutely infected with HIV-1 were significantly more resistant to in vitro control by IFNα than virus isolates generated from the same individuals during chronic, asymptomatic infection. Viral IFN resistance declined rapidly after the acute phase of infection: in five subjects, viruses derived from six-month consensus molecular clones were significantly more sensitive to the antiviral effects of IFNs than the corresponding founder viruses.ConclusionsThe establishment of systemic HIV-1 infection by relatively IFNα-resistant founder viruses lends strong support to the hypothesis that IFNα plays an important role in the control of HIV-1 replication during the earliest stages of infection, prior to systemic viral spread. These findings suggest that it may be possible to harness the antiviral activity of type 1 IFNs in prophylactic and potentially also therapeutic strategies to combat HIV-1 infection.


Journal of Immunology | 2005

HIV-1 Viral Escape in Infancy Followed by Emergence of a Variant-Specific CTL Response

Margaret E. Feeney; Yanhua Tang; K. Pfafferott; K. A. Roosevelt; Rika Draenert; Alicja Trocha; Xu G. Yu; Cori L. Verrill; Todd M. Allen; C. Moore; S. Mallal; Sandra K. Burchett; Kenneth McIntosh; Stephen Pelton; M A St John; Rohan Hazra; Paul Klenerman; Marcus Altfeld; Bruce D. Walker; Philip J. R. Goulder

Mutational escape from the CTL response represents a major driving force for viral diversification in HIV-1-infected adults, but escape during infancy has not been described previously. We studied the immune response of perinatally infected children to an epitope (B57-TW10) that is targeted early during acute HIV-1 infection in adults expressing HLA-B57 and rapidly mutates under this selection pressure. Viral sequencing revealed the universal presence of escape mutations within TW10 among B57- and B5801-positive children. Mutations in TW10 and other B57-restricted epitopes arose early following perinatal infection of B57-positive children born to B57-negative mothers. Surprisingly, the majority of B57/5801-positive children exhibited a robust response to the TW10 escape variant while recognizing the wild-type epitope weakly or not at all. These data demonstrate that children, even during the first years of life, are able to mount functional immune responses of sufficient potency to drive immune escape. Moreover, our data suggest that the consequences of immune escape may differ during infancy because most children mount a strong variant-specific immune response following escape, which is rarely seen in adults. Taken together, these findings indicate that the developing immune system of children may exhibit greater plasticity in responding to a continually evolving chronic viral infection.


Journal of Virology | 2006

Evidence of Viral Adaptation to HLA Class I-Restricted Immune Pressure in Chronic Hepatitis C Virus Infection

Silvana Gaudieri; Andri Rauch; Lawrence P. Park; Elizabeth Freitas; S. Herrmann; Gary P. Jeffrey; Wendy Cheng; K. Pfafferott; Kiloshni Naidoo; Russell Chapman; Manuel Battegay; Rainer Weber; Amalio Telenti; Hansjakob Furrer; I. James; Michaela Lucas; S. Mallal

ABSTRACT Cellular immune responses are an important correlate of hepatitis C virus (HCV) infection outcome. These responses are governed by the hosts human leukocyte antigen (HLA) type, and HLA-restricted viral escape mutants are a critical aspect of this host-virus interaction. We examined the driving forces of HCV evolution by characterizing the in vivo selective pressure(s) exerted on single amino acid residues within nonstructural protein 3 (NS3) by the HLA types present in two host populations. Associations between polymorphisms within NS3 and HLA class I alleles were assessed in 118 individuals from Western Australia and Switzerland with chronic hepatitis C infection, of whom 82 (69%) were coinfected with human immunodeficiency virus. The levels and locations of amino acid polymorphisms exhibited within NS3 were remarkably similar between the two cohorts and revealed regions under functional constraint and selective pressures. We identified specific HCV mutations within and flanking published epitopes with the correct HLA restriction and predicted escaped amino acid. Additional HLA-restricted mutations were identified that mark putative epitopes targeted by cell-mediated immune responses. This analysis of host-virus interaction reveals evidence of HCV adaptation to HLA class I-restricted immune pressure and identifies in vivo targets of cellular immune responses at the population level.

Collaboration


Dive into the K. Pfafferott's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michaela Lucas

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge