K. R. Bromund
Goddard Space Flight Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by K. R. Bromund.
Geophysical Research Letters | 2016
O. Le Contel; A. Retinò; H. Breuillard; L. Mirioni; Peter Robert; A. Chasapis; B. Lavraud; Thomas Chust; Laurence Rezeau; F. D. Wilder; D. B. Graham; M. R. Argall; D. J. Gershman; Per-Arne Lindqvist; Y. V. Khotyaintsev; Göran Marklund; R. E. Ergun; K. A. Goodrich; J. L. Burch; R. B. Torbert; J. Needell; M. Chutter; D. Rau; I. Dors; C. T. Russell; W. Magnes; R. J. Strangeway; K. R. Bromund; H. K. Leinweber; F. Plaschke
We present Magnetospheric Multiscale (MMS) mission measurements during a full magnetopause crossing associated with an enhanced southward ion flow. A quasi-steady magnetospheric whistler mode wave ...
Geophysical Research Letters | 2016
G. Le; H. Lühr; Brian J. Anderson; R. J. Strangeway; C. T. Russell; H. J. Singer; James A. Slavin; Y. Zhang; T. Huang; K. R. Bromund; P. J. Chi; G. Lu; D. Fischer; E. L. Kepko; H. K. Leinweber; W. Magnes; R. Nakamura; F. Plaschke; J. Park; Jan Rauberg; Claudia Stolle; R. B. Torbert
We present multimission observations of field-aligned currents, auroral oval, and magnetopause crossings during the 17 March 2015 magnetic storm. Dayside reconnection is expected to transport magnetic flux, strengthen field-aligned currents, lead to polar cap expansion and magnetopause erosion. Our multimission observations assemble evidence for all these manifestations. After a prolonged period of strongly southward interplanetary magnetic field, Swarm and AMPERE observe significant intensification of field-aligned currents .The dayside auroral oval, as seen by DMSP, appears as a thin arc associated with ongoing dayside reconnection. Both the field-aligned currents and the auroral arc move equatorward reaching as low as approx. 60 deg. magnetic latitude. Strong magnetopause erosion is evident in the in situ measurements of the magnetopause crossings by GOES 13/15 and MMS. The coordinated Swarm, AMPERE, DMSP, MMS and GOES observations, with both global and in situ coverage of the key regions, provide a clear demonstration of the effects of dayside reconnection on the entire magnetosphere.
Geophysical Research Letters | 2016
D. Schmid; R. Nakamura; M. Volwerk; F. Plaschke; Y. Narita; W. Baumjohann; W. Magnes; D. Fischer; H. U. Eichelberger; R. B. Torbert; C. T. Russell; R. J. Strangeway; H. K. Leinweber; G. Le; K. R. Bromund; Brian J. Anderson; James A. Slavin; E. L. Kepko
Abstract We present a statistical study of dipolarization fronts (DFs), using magnetic field data from MMS and Cluster, at radial distances below 12 R E and 20 R E, respectively. Assuming that the DFs have a semicircular cross section and are propelled by the magnetic tension force, we used multispacecraft observations to determine the DF velocities. About three quarters of the DFs propagate earthward and about one quarter tailward. Generally, MMS is in a more dipolar magnetic field region and observes larger‐amplitude DFs than Cluster. The major findings obtained in this study are as follows: (1) At MMS ∼57 % of the DFs move faster than 150 km/s, while at Cluster only ∼35 %, indicating a variable flux transport rate inside the flow‐braking region. (2) Larger DF velocities correspond to higher B z values directly ahead of the DFs. We interpret this as a snow plow‐like phenomenon, resulting from a higher magnetic flux pileup ahead of DFs with higher velocities.
Geophysical Research Letters | 2016
H. Breuillard; O. Le Contel; A. Retinò; A. Chasapis; T. Chust; L. Mirioni; D. B. Graham; F. D. Wilder; I. J. Cohen; Andris Vaivads; Yuri V. Khotyaintsev; P.-A. Lindqvist; Göran Marklund; J. L. Burch; R. B. Torbert; R. E. Ergun; K. A. Goodrich; J. Macri; J. Needell; M. Chutter; D. Rau; I. Dors; C. T. Russell; W. Magnes; R. J. Strangeway; K. R. Bromund; F. Plaschke; D. Fischer; H. K. Leinweber; Brian J. Anderson
Dipolarization fronts (DFs), embedded in bursty bulk flows, play a crucial role in Earths plasma sheet dynamics because the energy input from the solar wind is partly dissipated in their vicinity. This dissipation is in the form of strong low-frequency waves that can heat and accelerate energetic electrons up to the high-latitude plasma sheet. However, the dynamics of DF propagation and associated low-frequency waves in the magnetotail are still under debate due to instrumental limitations and spacecraft separation distances. In May 2015 the Magnetospheric Multiscale (MMS) mission was in a string-of-pearls configuration with an average intersatellite distance of 160 km, which allows us to study in detail the microphysics of DFs. Thus, in this letter we employ MMS data to investigate the properties of dipolarization fronts propagating earthward and associated whistler mode wave emissions. We show that the spatial dynamics of DFs are below the ion gyroradius scale in this region (∼500 km), which can modify the dynamics of ions in the vicinity of the DF (e.g., making their motion nonadiabatic). We also show that whistler wave dynamics have a temporal scale of the order of the ion gyroperiod (a few seconds), indicating that the perpendicular temperature anisotropy can vary on such time scales.
Geophysical Research Letters | 2016
R. Nakamura; V. A. Sergeev; W. Baumjohann; F. Plaschke; W. Magnes; D. Fischer; A. Varsani; D. Schmid; T. K. M. Nakamura; C. T. Russell; R. J. Strangeway; H. K. Leinweber; G. Le; K. R. Bromund; C. J. Pollock; B. L. Giles; J. C. Dorelli; D. J. Gershman; W. R. Paterson; L. A. Avanov; S. A. Fuselier; K. J. Genestreti; J. L. Burch; R. B. Torbert; M. Chutter; M. R. Argall; Brian J. Anderson; Per-Arne Lindqvist; Göran Marklund; Y. V. Khotyaintsev
Abstract We report on field‐aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small‐scale field‐aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short‐lived earthward (downward) intense field‐aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field‐aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high‐energy ion beam‐produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.
The Astrophysical Journal | 2017
A. Chasapis; William H. Matthaeus; T. N. Parashar; O. LeContel; A. Retinò; H. Breuillard; Y. V. Khotyaintsev; Andris Vaivads; B. Lavraud; T. E. Moore; J. L. Burch; R. B. Torbert; Per-Arne Lindqvist; R. E. Ergun; Göran Marklund; K. A. Goodrich; F. D. Wilder; M. Chutter; J. Needell; D. Rau; I. Dors; C. T. Russell; G. Le; W. Magnes; R. J. Strangeway; K. R. Bromund; H. K. Leinweber; F. Plaschke; D. Fischer; Brian J. Anderson
We present a statistical study of coherent structures at kinetic scales, using data from the Magnetospheric Multiscale mission in the Earths magnetosheath. We implemented the multi-spacecraft part ...
Geophysical Research Letters | 2016
C. Zhao; C. T. Russell; R. J. Strangeway; S. M. Petrinec; W. R. Paterson; M. Zhou; Brian J. Anderson; W. Baumjohann; K. R. Bromund; M. Chutter; D. Fischer; G. Le; R. Nakamura; F. Plaschke; James A. Slavin; R. B. Torbert; Hanying Wei
The Magnetospheric Multiscale mission (MMS) consists of four identical spacecraft forming a closely separated (≤10 km) and nearly regular tetrahedron. This configuration enables the decoupling of spatial and temporal variations and allows the calculation of the spatial gradients of plasma and electromagnetic field quantities. We make full use of the well cross-calibrated MMS magnetometer and fast plasma instruments measurements to calculate both the magnetic and plasma forces in flux transfer events (FTEs), and evaluate the relative contributions of different forces to the magnetopause momentum variation. This analysis demonstrates that some but not all FTEs, consistent with previous studies, are indeed force-free structures in which the magnetic pressure force balances the magnetic curvature force. Furthermore, we contrast these events with FTE events that have non-force-free signatures.
Geophysical Research Letters | 2017
G. Le; P. J. Chi; R. J. Strangeway; C. T. Russell; James A. Slavin; Kazue Takahashi; H. J. Singer; Brian J. Anderson; K. R. Bromund; D. Fischer; E. L. Kepko; W. Magnes; R. Nakamura; F. Plaschke; R. B. Torbert
Abstract We report global observations of high‐m poloidal waves during the recovery phase of the 22 June 2015 magnetic storm from a constellation of widely spaced satellites of five missions including Magnetospheric Multiscale (MMS), Van Allen Probes, Time History of Events and Macroscale Interactions during Substorm (THEMIS), Cluster, and Geostationary Operational Environmental Satellites (GOES). The combined observations demonstrate the global spatial extent of storm time poloidal waves. MMS observations confirm high azimuthal wave numbers (m ~ 100). Mode identification indicates the waves are associated with the second harmonic of field line resonances. The wave frequencies exhibit a decreasing trend as L increases, distinguishing them from the single‐frequency global poloidal modes normally observed during quiet times. Detailed examination of the instantaneous frequency reveals discrete spatial structures with step‐like frequency changes along L. Each discrete L shell has a steady wave frequency and spans about 1 R E, suggesting that there exist a discrete number of drift‐bounce resonance regions across L shells during storm times.
Geophysical Research Letters | 2016
F. Plaschke; N. Kahr; D. Fischer; R. Nakamura; W. Baumjohann; W. Magnes; J. L. Burch; R. B. Torbert; C. T. Russell; B. L. Giles; R. J. Strangeway; H. K. Leinweber; K. R. Bromund; Brian J. Anderson; G. Le; M. Chutter; James A. Slavin; E. L. Kepko
Surface waves at the magnetopause flanks typically feature steeper, i.e., more inclined leading (antisunward facing) than trailing (sunward facing) edges. This is expected for Kelvin-Helmholtz instability (KHI) amplified waves. Very rarely, during northward interplanetary magnetic field (IMF) conditions, anomalous/inverse steepening has been observed. The small-scale tetrahedral configuration of the Magnetospheric Multiscale spacecraft and their high time resolution measurements enable us to routinely ascertain magnetopause boundary inclinations during surface wave passage with high accuracy by four-spacecraft timing analysis. At the dusk flank magnetopause, 77%/23% of the analyzed wave intervals exhibit regular/inverse steepening. Inverse steepening happens during northward IMF conditions, as previously reported and, in addition, during intervals of dominant equatorial IMF. Inverse steepening observed under the latter conditions may be due to the absence of KHI or due to instabilities arising from the alignment of flow and magnetic fields in the magnetosheath.
Science | 2017
C. T. Russell; R. J. Strangeway; C. Zhao; Brian J. Anderson; W. Baumjohann; K. R. Bromund; D. Fischer; L. Kepko; G. Le; W. Magnes; R. Nakamura; F. Plaschke; James A. Slavin; R. B. Torbert; T. E. Moore; W. R. Paterson; C. J. Pollock; J. L. Burch
Probing the structure of the magnetopause The magnetopause is the boundary in space that separates the region dominated by Earth’s magnetic field (the magnetosphere) from the surrounding solar wind. The four spacecraft of NASA’s Magnetospheric Multiscale (MMS) mission have repeatedly flown in formation through the magnetopause, measuring the properties of the plasma and magnetic fields in the region. Russell et al. used MMS measurements to study the magnetopause’s structure and force balance. They identified small-scale dynamic features that form a complex topology and evidence for magnetic flux ropes at the boundary. The results aid our understanding of Earth’s space environment and magnetospheres around other planets. Science, this issue p. 960 Flying through Earth’s magnetopause reveals small-scale dynamic structures and magnetic flux ropes. The magnetopause deflects the solar wind plasma and confines Earth’s magnetic field. We combine measurements made by the four spacecraft of the Magnetospheric Multiscale mission to demonstrate how the plasma and magnetic forces at the boundary affect the interaction between the shocked solar wind and Earth’s magnetosphere. We compare these forces with the plasma pressure and examine the electron distribution function. We find that the magnetopause has sublayers with thickness comparable to the ion scale. Small pockets of low magnetic field strength, small radius of curvature, and high electric current mark the electron diffusion region. The flow of electrons, parallel and antiparallel to the magnetic field, reveals a complex topology with the creation of magnetic ropes at the boundary.