Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where K. R. L. Schwarz is active.

Publication


Featured researches published by K. R. L. Schwarz.


Reproduction in Domestic Animals | 2010

Consequences of Nitric Oxide Synthase Inhibition During Bovine Oocyte Maturation on Meiosis and Embryo Development

K. R. L. Schwarz; P. R. L. Pires; T. H. C. De Bem; P. R. Adona; C. L. V. Leal

The importance of nitric oxide synthase (NOS) in bovine oocyte maturation was investigated. Oocytes were in vitro matured with the NOS inhibitor N(w)-L-nitro-arginine methyl-ester (10(-7), 10(-5) and 10(-3) m L-NAME) and metaphase II (MII) rates and embryo development and quality were assessed. The effect of L-NAME (10(-7) m) during pre-maturation and/or maturation on embryo development and quality was also assessed. L-NAME decreased MII rates (78-82%, p < 0.05) when compared with controls without L-NAME (96%). Cleavage (77-88%, p > 0.05), Day 7 blastocyst rates (34-42%, p > 0.05) and total cell numbers in blastocysts were similar for all groups (146-171 cells, p > 0.05). Day 8 blastocyst TUNEL positive cells (3-4 cells) increased with L-NAME treatment (p < 0.05). For oocytes cultured with L-NAME during pre-maturation and/or maturation, Day 8 blastocyst development (26-34%) and Day 9 hatching rates (15-22%) were similar (p > 0.05) to controls pre-matured and matured without NOS inhibition (33 and 18%, respectively), while total cell numbers (Day 9 hatched blastocysts) increased (264-324 cells, p < 0.05) when compared with the controls (191 cells). TUNEL positive cells increased when NOS was inhibited only during the maturation period (8 cells, p < 0.05) when compared with the other groups (3-4 cells). NO may be involved in meiosis progression to MII and its deficiency during maturation increases apoptosis in embryos produced in vitro. Nitric oxide synthase inhibition during pre-maturation and/or maturation affects embryo quality.


Animal Reproduction Science | 2009

Endothelial and inducible nitric oxide synthases in oocytes of cattle

P. R. L. Pires; N.P. Santos; P. R. Adona; M.M. Natori; K. R. L. Schwarz; T. H. C. De Bem; C. L. V. Leal

Nitric oxide (NO) is a chemical messenger generated by the activity of the nitric oxide synthases (NOS). The NOS/NO system appears to be involved in oocyte maturation, but there are few studies on gene expression and protein activity in oocytes of cattle. The present study aimed to investigate gene expression and protein activity of NOS in immature and in vitro matured oocytes of cattle. The influence of pre-maturation culture with butyrolactone I in NOS gene expression was also assessed. The following experiments were performed: (1) detection of the endothelial (eNOS) and inducible (iNOS) isoforms in the ovary by immunohistochemistry; (2) detection of eNOS and iNOS in the oocytes before and after in vitro maturation (IVM) by immunofluorescence; (3) eNOS and iNOS mRNA and protein in immature and in vitro matured oocytes, with or without pre-maturation, by real time PCR and Western blotting, respectively; and (4) NOS activity in immature and in vitro matured oocytes by NADPH-diaphorase. eNOS and iNOS were detected in oocytes within all follicle categories (primary, secondary and tertiary), and other compartments of the ovary and in the cytoplasm of immature and in vitro matured oocytes. Amount of mRNA for both isoforms decreased after IVM, but was maintained after pre-maturation culture. The NOS protein was detected in immature (pre-mature or not) and was still detected in similar amount after pre-maturation and maturation for both isoforms. NOS activity was detected only in part of the immature oocytes. In conclusion, isoforms of NOS (eNOS and iNOS) are present in oocytes of cattle from early folliculogenesis up to maturation; in vitro maturation influences amount of mRNA and NOS activity.


Reproduction, Fertility and Development | 2008

Influence of nitric oxide during maturation on bovine oocyte meiosis and embryo development in vitro

K. R. L. Schwarz; P. R. L. Pires; P. R. Adona; Tiago Henrique Câmara de Bem; Cláudia Lima Verde Leal

The effect of s-nitroso-n-acetyl-l,l-penicillamine (SNAP, a nitric oxide donor) during in vitro maturation (IVM) on nuclear maturation and embryo development was investigated. The effect of increasing nitric oxide (NO) during prematuration or maturation, or both, on embryo development was also assessed. 10(-3) m SNAP nearly blocked oocytes reaching metaphase II (MII) (7%, P < 0.05) while 10(-5) m SNAP showed intermediate proportions (55%). For 10(-7) m SNAP and controls (without SNAP), MII percentages were similar (72% for both, P > 0.05), but superior to the other treatment groups (P < 0.05). Blastocyst development, however, was not affected (38% for all treatments, P < 0.05). TUNEL-positive cells in hatched blastocysts (Day 9) increased when IVM included 10(-5) m SNAP (8 v. 3 to 4 cells in the other treatments, P > 0.05), without affecting total cell numbers (240 to 291 cells, P > 0.05). When oocytes were prematured followed by IVM with or without 10(-7) m SNAP, during either culture period or both, blastocyst development was similar (26 to 40%, P > 0.05). When SNAP was included during both prematuration and IVM, the proportion of Day 9 hatched embryos increased (28% v. 14 to 19% in the other treatments, P < 0.05). Apoptotic cells, however, increased when SNAP was included (6 to 10 cells) in comparison to prematuration and maturation without SNAP (3 cells, P < 0.05). NO may be involved in meiotic progression and apoptosis during embryo development.


Theriogenology | 2014

Effect of nitric oxide on the cyclic guanosine monophosphate (cGMP) pathway during meiosis resumption in bovine oocytes.

K. R. L. Schwarz; P. R. L. Pires; L. G. Mesquita; Marcos R. Chiaratti; Cláudia Lima Verde Leal

Nitric oxide (NO) is a chemical messenger involved in the control of oocyte maturation. It stimulates guanylate cyclase to produce cyclic guanosine monophosphate (cGMP), which in turn activates cGMP-dependent protein kinase (PKG) and some phosphodiesterases that may interfere with cAMP levels, a nucleotide also involved in meiosis resumption. The aim of this study was to determine the role played by NO on the cGMP/cAMP pathway during meiosis resumption in bovine oocytes. The effects of increasing NO generated by S-nitroso-N-acetylpenicillamine (SNAP; 10(-7)-10(-3) mol/L) and of other drugs that may affect the NO/cGMP pathway (proptoporfirin IX and 8-Br-cGMP) on meiosis resumption were investigated in bovine cumulus-oocyte complexes (COCs) matured for 9 hours in a semidefined medium (TCM199 + 3 mg/mL BSA). The COCs matured with 10(-7) mol/L SNAP associated or not with 100 μmol/L oxadiazole-one quinoxaline, a guanylate cyclase inhibitor, also had their cGMP and cAMP levels measured during the first hours of maturation (1, 3, and 6 hours). Quantitative polymerase chain reaction was performed by real-time polymerase chain reaction to determine the effects of NO on expression of genes encoding for enzymes of the NO/guanylate cyclase/cGMP and cAMP pathways during the first 9 hours of oocyte maturation. Increasing NO levels using 10(-7) mol/L SNAP resulted in lower rate of germinal vesicle breakdown (36% germinal vesicle breakdown; P < 0.05) at 9 hours IVM, whereas control group and the treatments with 10(-9) and 10(-8) mol/L SNAP showed about 70% germinal vesicle breakdown (P > 0.05). A temporary increase in cGMP levels was also observed with the same treatment (4.51 pmol/COC) at 1 hour IVM, which was superior to the control group (2.97 pmol/COC; P < 0.05) and was reversed by inhibiting guanylate cyclase activity with 100 μmol/L oxadiazole-one quinoxaline. Neither cAMP levels nor gene expression were affected by NO. These results suggest that NO acts via guanylate cyclase/cGMP and that even a temporary increase in cGMP levels leads to a delay in meiosis resumption, even when cAMP levels have declined. Nitric oxide does not act on oocyte maturation by affecting cAMP levels or the expression of genes related to the NO/guanylate cyclase/cGMP and cAMP pathways. Also, to our knowledge this is the first report to detect PKG1, PKG2, phosphodiesterase-5A, ADCY3, ADCY6, and ADCY9 transcripts in bovine oocytes.


Reproduction, Fertility and Development | 2017

Effects of fetal calf serum on cGMP pathway and oocyte lipid metabolism in vitro

K. R. L. Schwarz; R. C. Botigelli; Maite del Collado; F. C. Castro; H. Fernandes; D. M. Paschoal; Cláudia Lima Verde Leal

Intracellular levels of cyclic nucleotides, such as cGMP, are involved in the regulation of adipocyte lipolysis. Cumulus-oocyte complexes (COCs) express enzymes that both synthesise (guanylate cyclase) and degrade (phosphodiesterase (PDE) 5A) cGMP. Because serum interferes with lipid metabolism, its effects on the cGMP pathway and lipid content in bovine COCs were examined. COCs were matured in medium containing fetal calf serum (FCS; 2% or 10%) or 0.4% bovine serum albumin (BSA; control). At both 2% and 10%, FCS decreased cGMP levels in COCs compared with BSA (0.64 and 1.04 vs 9.46 fmol per COC respectively; P<0.05) and decreased transcript levels of guanylate cyclase 1, soluble, beta 3 (GUCY1B3), whereas PDE5A levels were increased. FCS also affected the expression of genes related to lipolysis, increasing relative expression of perilipin 2 (PLIN2) and carnitine palmitoyltransferase 1B (CPT1B) in cumulus cells. Effects of FCS and cGMP on the lipid content of oocytes and embryos were evaluated by Nile red staining. COCs were matured with 10% FCS, FCS+10-5 M sildenafil (SDF), a PDE5 inhibitor, or 0.4% BSA. The lipid content was increased in oocytes matured in FCS compared with BSA (fluorescence intensity 20.1 vs 17.61 respectively; P<0.05), whereas the lipid content in oocytes matured in FCS+SDF (fluorescence intensity 16.33) was similar to that in the BSA-treated group (P>0.05). In addition, lipid content was higher in embryos from oocytes matured with FCS than BSA (fluorescence intensity 31.12 vs 22.31 respectively; P<0.05), but was increased even further in the FCS+SDF-treated group (fluorescence intensity 40.35; P<0.05), possibly due to a compensatory mechanism during embryo culture without SDF for the reduction in lipid content during IVM. The present study provides, for the first time, evidence that the cGMP pathway may be involved in lipid metabolism in bovine COCs and that this pathway is affected by FCS.


Zygote | 2017

Influence of nitric oxide and phosphodiesterases during in vitro maturation of bovine oocytes on meiotic resumption and embryo production

R. C. Botigelli; K. R. L. Schwarz; Fabiane Gilli Zaffalon; Maite del Collado; Fernanda C. de Castro; H. Fernandes; Cláudia Lima Verde Leal

This study aimed to examine the effects of nitric oxide (NO) and different phosphodiesterase (PDE) families on meiosis resumption, nucleotides levels and embryo production. Experiment I, COCs were matured in vitro with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) associated or not with the soluble guanylate cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), meiotic resumption and nucleotides levels were assessed. SNAP delayed germinal vesicle breakdown (GVBD) (53.4 ± 1.2 versus 78.4 ± 2.4% for controls, P 0.05). Cyclic GMP levels were higher in SNAP (3.94 ± 0.18, P 0.05). Embryo development did not differ from the control for SNAP and cilostamide groups (38.7 ± 5.8, 37.9 ± 6.2 and 40.5 ± 5.8%, P > 0.05), but SNAP + cilostamide decreased embryo production (25.7 ± 6.9%, P < 0.05). In conclusion, SNAP was confirmed to delay meiosis resumption by the NO/sGC/cGMP pathway, by increasing cGMP, but not cAMP. Inhibiting different PDEs to further increase nucleotides in association with SNAP did not show any additive effects on meiosis resumption, indicating that other pathways are involved. Moreover, SNAP + cilostamide affected the meiosis progression and decreased embryo development.


Reproductive Biology | 2018

Supplementing in vitro embryo production media by NPPC and sildenafil affect the cytoplasmic lipid content and gene expression of bovine cumulus-oocyte complexes and embryos

Ramon Cesar Botigelli; E. M. Razza; E. M. Pioltine; P. K. Fontes; K. R. L. Schwarz; Cláudia Lima Verde Leal; Marcelo Fábio Gouveia Nogueira

In our study, we added natriuretic peptide type C (NPPC) and/or sildenafil during in vitro maturation (IVM) of bovine cumulus-oocyte complexes (COCs) followed by in vitro culture (IVC) of embryos with or without sildenafil. We evaluated the effects on the lipid content (LC) of oocytes and embryos and also verified the expression of 96 transcripts related to competence in matured COCs and 96 transcripts related to embryo quality in blastocysts. After IVM, LC was decreased in oocytes by NPPC while sildenafil did not affect LC in oocytes. The genes involved in lipid metabolism and lipid accumulation (DGAT1, PLIN2and PLIN3) were not affected in COCs after treatment during IVM, although the expression of PTX3 (a cumulus cells expansion biomarker) was increased and the hatched blastocyst rate was increased by NPPC during IVM. During IVM, sildenafil increased the mRNA relative abundance of HSF1 and PAF1 and decreased REST in blastocysts. The use of sildenafil in IVC increased the LC of blastocysts. The mRNA abundance in blastocysts produced during IVC with sildenafil was changed for ATF4, XBP1, DNMT3A, DNMT3B, COX2, and SOX2. Although NPPC reduced the LC of oocytes after IVM and upregulated markers for cumulus expansion, embryo production was not affected and the produced blastocysts were able to regain their LC after IVC. Finally, the use of sildenafil during IVC increased the cytoplasmic LC of embryos but did not affect embryo quality, as measured by analysis of 96 transcripts related to embryo quality.


PLOS ONE | 2018

Correction: The role of cGMP as a mediator of lipolysis in bovine oocytes and its effects on embryo development and cryopreservation

K. R. L. Schwarz; Fernanda C. de Castro; Letícia Schefer; R. C. Botigelli; Daniela Martins Paschoal; Hugo Fernandes; Cláudia Lima Verde Leal

[This corrects the article DOI: 10.1371/journal.pone.0191023.].


Reproduction, Fertility and Development | 2013

259 PRELIMINARY INVESTIGATIONS OF THE EFFECT OF NITRIC OXIDE ON THE EXPRESSION OF GENES INVOLVED IN THE NITRIC OXIDE/CYCLIC GUANOSINE MONOPHOSPHATE/CYCLIC ADENOSINE MONOPHOSPHATE PATHWAY DURING MEIOSIS RESUMPTION IN BOVINE OOCYTES

K. R. L. Schwarz; Marcos Roberto Chiaratti; L. G. Mesquita; C. L. V. Leal

Nitric oxide is a chemical messenger generated by the activity of the enzyme NO synthase (NOS) and has been implicated in the control of oocyte maturation. Nitric oxide stimulates guanylate cyclase (GC) to produce cyclic guanosine monophosphate (cGMP), which in turn activates cGMP-dependent protein kinase (PKG) and some phosphodiesterases (PDE) that may interfere with cyclic adenosine monophosphate (cAMP) levels, a nucleotide also involved in meiosis resumption. In a previous study, we found that increasing NO levels in the presence of a NO donor (S-nitroso-N-acetylpenicillamine, SNAP) resulted in a delayed resumption of meiosis and a lower rate of germinal vesicle breakdown after 9 h of in vitro maturation. A temporary increase in cGMP levels was also observed with the same treatment, which was reversed by inhibiting GC activity with oxadiazolo-quinoxaline-one (ODQ; unpublished data). These results suggest that NO acted via GC/cGMP and that even a temporary increase in the cGMP level led to a delay of meiosis resumption. The aim of the present study was to determine the role played by NO on the expression of genes encoding for enzymes of the NO/GC/cGMP and cAMP pathways during the first 9 h of oocyte maturation. Cumulus–oocyte complexes were in vitro matured for 9 h in a semi-defined medium (TCM-199 + 3 mg mL–1 of BSA) with 10 to 7 M SNAP associated or not associated with 100 µM ODQ, a GC inhibitor. A group of oocytes incubated in the absence of inhibitors was considered the control. Total RNA was extracted from pools of 20 denuded oocytes with TRIzol (Life Technologies, Grand Island, NY, USA) and reverse transcribed into complementary DNA using a high-capacity reverse transcription kit (Applied Biosystems, Foster City, CA, USA). Quantitative PCR was performed by real-time PCR using SYBR Green (Applied Biosystems). The genes that had their expression measured pertained to one of the following groups: 1) genes encoding for enzymes that synthesise NO (NOS2 and NOS3); 2) genes involved in the control of cGMP levels (GUCY1B3 and PDE5A) or the enzymes activated by it (PKG1 and PKG2); or 3) genes involved in the control of cAMP levels (ADCY3, ADCY6, ADCY9, PDE3A, and PDE8A) or one of the enzymes activated by it (PKA1). GAPDH and PPIA were selected as housekeeping genes using qbasePLUS version 2.3 (Biogazelle, Zwijnaarde, Belgium). Data from 5 replicates were analysed using LinRegPCR version 11.1 and SAS version 9.2 (SAS Institute Inc., Cary, NC, USA). All genes were found to be expressed in the three experimental groups; however, a significant difference in gene expression levels was not found among groups. Results suggest that NO does not act on oocyte maturation by affecting the expression of the investigated genes in oocytes. To our knowledge, this is the first report to demonstrate the expression of the ADCY3, ADCY6, and ADCY9 genes in bovine oocytes. Further research is in progress to study the effect of the SNAP treatment on the expression of these genes in cumulus cells. Financial support from FAPESP 2010/18023-9.


Reproduction, Fertility and Development | 2007

292 OOCYTES FROM FOLLICLES OF DIFFERENT DIAMETERS: EMBRYO IN VITRO DEVELOPMENTAL POTENTIAL AND QUALITY

T. H. C. De Bem; K. R. L. Schwarz; L. G. Mesquita; P. R. Adona; C. L. V. Leal

The present study aimed to assess the developmental potential and quality of embryos produced from oocytes originating from follicles of different sizes. Ovaries were collected at a slaughterhouse and follicles of 6 mm were aspirated. Follicle diameters were estimated based on the size of their exposed surface on the ovarian cortex using a ruler as reference for the first aspirations and were then based on visual evaluation. Aspirated oocytes, separated by their follicular origin, were matured in vitro in TCM-199 supplemented with 10% FCS, 5.0 µg mL-1 of LH, 0.5 µg mL-1 of FSH, 0.2 mM pyruvate, and 10 µg mL-1 of gentamicin for 22 h. After in vitro maturation, oocytes were in vitro-fertilized (IVF) using frozen–thawed semen prepared by Percoll gradient. Sperm cells were co-cultured with the oocytes at a final concentration of 2 × 106 sperm cells mL-1 in TALP-IVF medium supplemented with 2 µM penicillamine, 1 µM hypotaurine, 250 µM epinephrine, and 20 µg mL-1 of heparin. After 20 h, presumptive zygotes were partially denuded and transferred to in vitro culture (IVC) medium (TCM-199 supplemented with 10% FCS, 2.0 mM pyruvate, and 10 mg mL-1 of gentamicin). All cultures were incubated at 38.5°C under 5% CO2 in air and maximum humidity. The cleavage rate was assessed after 48 h of IVC, and blastocyst development was assessed on Day 7 (D7). On Day 9 (D9), the hatching rate was assessed and the hatched embryos were fixed for 1 h (3% paraformaldehyde in PBS), permeabilized for another h (0.5% Triton-X, 0.1% sodium citrate, and 0.1% plyvinyl alcohol in PBS), and evaluated by the TUNEL technique (in situ cell death detection kit). Total cell number and TUNEL-positive cells in embryos were counted under an epifluorescence microcope. Data of 4 replicates were analyzed by ANOVA and comparisons among groups were made by the Tukey test. The level of significance used was 5%. From the oocytes used ( 6 mm = 88), cleavage rates increased with increasing follicular diameter. Oocytes originating from 6-mm follicles resulted in 75, 93.6, and 95.5% cleavage rates, respectively (P > 0.05). For blastocyst rates on D7, 6 mm = 41.1%; P > 0.05). Regarding the hatching rate, total cell numbers, and TUNEL-positive cells on D9, 6 mm (32.3%, 237, and 0.23%, respectively) were not different (P > 0.05). The results suggest that oocytes from larger follicles are more competent for cleavage and blastocyst development on D7; however, when oocytes reach the blastocyst stage, hatching, total cell numbers, and apoptotic cell numbers are not influenced by follicle diameter. Financial suport for this work was provided by the FAPESP, Brazil.

Collaboration


Dive into the K. R. L. Schwarz's collaboration.

Top Co-Authors

Avatar

C. L. V. Leal

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

F. C. Castro

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. R. Adona

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

P. R. L. Pires

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

H. Fernandes

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. G. Mesquita

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

D. M. Paschoal

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge