K. R. Sivaraman
Indian Institute of Astrophysics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by K. R. Sivaraman.
Solar Physics | 1989
V. I. Makarov; K. R. Sivaraman
We derive the poleward migration trajectory diagram of the filament bands for the years 1915–1982 from the H-alpha synoptic charts. We find that the global solar activity commences soon after the polar field reversal in the form of two components in each hemisphere. The first component we identify with the polar faculae that appear at latitudes 40–70° and migrate polewards. The second and the more powerful component representing the sunspots shows up at ∼40° latitudes 5–6 years later and drifts equatorward giving rise to the butterfly diagram. Thus the global solar activity is described by the faculae and the sunspots that occur at different latitude belts and displaced in time by 5–6 years. This gives rise to the prolonged duration for the global solar activity lasting for 16–18 years as against the 11 years which has come about based only on the spots. The two components match with the pattern of the coronal emission in 5303 Å line. Finally, we show that the two components of activity also match with the pattern of excess shear associated with the torsional oscillations on the Sun and this provides a link between the torsional oscillations and the magnetic activity.
Solar Physics | 1989
V. I. Makarov; K. R. Sivaraman
Properties of a latitude zonal component of the large-scale solar magnetic field are analyzed on the basis of Hα charts for 1905–1982. Poleward migration of prominences is used to determine the time of reversal of the polar magnetic field for 1870–1905. It is shown that in each hemisphere the polar, middle latitude and equatorial zones of the predominant polarity of large-scale magnetic field can be detected by calculating the average latitude of prominence samples referred to one boundary of the large-scale magnetic field. The cases of a single and three-fold polar magnetic field reversal are investigated. It is shown that prominence samples referred to one boundary of the large-scale magnetic field do not have any regular equatorward drift. They manifest a poleward migration with a variable velocity up to 30 m s-1 depending on the phase of the cycle. The direction of migration is the same for both low-latitude and high-latitude zones. Two different time intervals of poleward migration are found. One lasts from the beginning of the cycle to the time of polar magnetic field reversal and the other lasts from the time of reversal to the time of minimum activity. The velocity of poleward migration of prominences during the first period is from 5 m s-1 to 30 m s-1 and the second period is devoid of regular latitude drift.
Solar Physics | 1983
V. I. Makarov; M. P. Fatianov; K. R. Sivaraman
Poleward migration of the magnetic neutral line on the Sun has been calculated for the periods 1945–1950 and 1955–1981 using synoptic charts based on Hα observations. Epochs of sign reversal of the solar magnetic field at latitudes 50° to 90° have been determined for these periods. During the cycles 19 and 20 a threefold sign reversal took place in the northern hemisphere. During all the above cycles both the solar poles were of one polarity for a period ranging from 0.5 to 1 year. The poleward drift velocity of the magnetic neutral line varies from 6 to 29 m s−1 and seems to depend on the strength of the cycle.
Solar Physics | 1982
K. R. Sivaraman; William Livingston
Although the Ca ii K232 network is known to be cospatial with magnetic elements there has been doubt as to the magnetic origin of the fainter K2V points. We demonstrate that weak magnetic elements also lie at the roots of the K2V points, and because the latter are numerous they may contribute sensibly to the integrated light profile of Ca ii K.
Archive | 1993
K. R. Sivaraman; S. S. Gupta; Robert F. Howard
A program of digitization of the daily white-light solar images from the Kodaikanal station of the Indian Institute of Astrophysics is in progress. A similar set of white-light data from the Mount Wilson Observatory was digitized some years ago. In both cases, areas and positions of individual sunspot umbrae are measured. In this preliminary report, comparisons of these measurements from the two sites are made. It is shown that both area and position measurements are in quite good agreement. The agreement is sufficiently good that it is possible to measure motions and area changes of sunspots from one site to the next, involving time differences from about 12 hours to about 36 hours. This enables us to trace the motions of many more small sunspots than could be done from one site alone. Very small systematic differences in rotation rate between the two sites of about 0.4% are found. A portion of this discrepancy is apparently due to the difference in plate scales between the two sites. Another contributing factor in the difference is the latitude visibility of sunspots. In addition it is suggested that a small, systematic difference in the measured radii at the two sites may contribute a small amount to this discrepancy, but it has not been possible to confirm this hypothesis. It is concluded that in general, when dealing with high precision rotation results of this sort, one must be extremely careful about subtle systematic effects.
Solar Physics | 1989
V. I. Makarov; V. V. Makarova; K. R. Sivaraman
The paper reports the results of the analysis of the data on polar faculae for three solar cycles (1960–1986) at the Kislovodsk Station of the Pulkovo Observatory and on polar bright points in Ca ii K line for two solar cycles (1940–1957) at the Kodaikanal Station of the Indian Institute of Astrophysics. We have noticed that the monthly numbers of polar faculae and polar bright points in Ca ii K line and monthly sunspot areas in each hemisphere of the following solar cycle have a correlation with each other. A new cycle of polar faculae and polar bright points in the Ca ii K line begins after the polar magnetic field reversal. We find that the smaller the period between the ending of the polar field reversal and the beginning of a new sunspot cycle is, the more intense is the cycle itself. The intensity of the forthcoming solar cycle (cycle 22) and the periods of strong fluctuations in activity expected in this cycle are also discussed.
Solar Physics | 1999
S. S. Gupta; K. R. Sivaraman; Robert Howard
The Kodaikanal sunspot data set covering the interval 1906–1987 is analyzed for differential rotation of sunspots of different sizes. As is known, smaller sunspots rotate faster than larger sunspots, and this result is verified in the analysis of this data set. These results agree well with the Mount Wilson sunspot results published earlier. The activity cycle dependence of sunspot rotation is studied. An increase in this rate at the minimum phase is seen, which has been reported earlier. It is demonstrated that this cycle variation is seen for sunspots in all size categories, which suggests that it is not a relative increase in the number of the faster-rotating small sunspots that causes the cycle dependence. These results are discussed as they may relate to subsurface dynamic properties of the Sun.
Solar Physics | 1992
K. R. Sivaraman; R. R. Rausaria; S. M. Aleem
We have evaluated the shear angle of the neutral line of the non-potential magnetic field for one or two days prior to and after the flare event for 10 cases. We have used the Hα filament positions to evaluate the shear in the neutral line. We find from the samples we have studied that it is the change in the shear that occurs a day prior to the flare that can lead to the event. This change can be in either direction, i.e., it can be a large increase from a small value or a decrease from a large initial value. Thus it is the change in the shear angle that seems to be a deciding criterion for a flare to occur and not a large value for the shear angle itself. We have one instance where there was no significant change in the shear angle over a period of a few days and this region, although similar to other active regions studied, did not produce any flare activity.
Solar Physics | 1994
R. Kariyappa; K. R. Sivaraman; M. N. Anadaram
We have analyzed a large number of Caii H line profiles at the sites of the bright points in the interior of the network using a 35-min-long time sequence of spectra obtained at the Vacuum Tower Telescope (VTT) of the Sacramento Peak Observatory on a quiet regon of the solar disc and studied the dynamical processes associated with these structures. Our analysis shows that the profiles can be grouped into three classes in terms of their evolutionary behaviour. It is surmized that the differences in their behaviour are directly linked with the inner network photospheric magnetic points to which they have been observed to bear a spatial correspondence. The light curves of these bright points give the impression that the ‘main pulse’, which is the upward propagating disturbance carrying energy, throws the medium within the bright point into a resonant mode of oscillation that is seen as the follower pulses. The main pulse as well as the follower pulses have identical periods of intensity oscillations, with a mean value around 190 ± 20 s. We show that the energy transported by these main pulses at the sites of the bright points over the entire visible solar surface can account for a substantial fraction of the radiative loss from the quiet chromosphere, according to current models.
Solar Physics | 2008
K. R. Sivaraman; H. M. Antia; S. M. Chitre; V. V. Makarova
We compare the zonal-flow pattern in subsurface layers of the Sun with the distribution of surface magnetic features such as sunspots and polar faculae. We demonstrate that, in the activity belt, the butterfly pattern of sunspots coincides with the fast stream of zonal flows, although part of the sunspot distribution does spill over to the slow stream. At high latitudes, the polar faculae and zonal-flow bands have similar distributions in the spatial and temporal domains.