K. Ramachandra
Tata Institute of Fundamental Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by K. Ramachandra.
Proceedings Mathematical Sciences | 1994
R. Balasubramanian; K. Ramachandra
AbstractWe prove a general theorem on the zeros of a class of generalised Dirichlet series. We quote the following results as samples. Theorem A.Let 0<θ<1/2and let {an}be a sequence of complex numbers satisfying the inequality
Hardy–Ramanujan Journal | 1992
R. Balasubramanian; K. Ramachandra
Journal of Number Theory | 1969
K. Ramachandra
\left| {\sum\limits_{m = 1}^N {a_m - N} } \right| \leqslant \left( {\frac{1}{2} - \theta } \right)^{ - 1}
Arkiv för Matematik | 1981
R. Balasubramanian; K. Ramachandra
Journal of Number Theory | 1980
R. Balasubramanian; K. Ramachandra
for N = 1,2,3,…,also for n = 1,2,3,…let αnbe real and ¦αn¦ ≤ C(θ)where C(θ) > 0is a certain (small)constant depending only on θ. Then the number of zeros of the function
Indagationes Mathematicae | 1992
R. Balasubramanian; K. Ramachandra
Indagationes Mathematicae | 1994
R. Balasubramanian; K. Ramachandra
\sum\limits_{n = 1}^N {a_n \left( {n + \alpha _n } \right)^{ - s} } = \zeta \left( s \right) + \sum\limits_{n = 1}^\infty {\left( {a_n \left( {n + \alpha _n } \right)^{ - s} - n^{ - s} } \right)}
Proceedings Mathematical Sciences | 1984
R. Balasubramanian; K. Ramachandra
Journal of Number Theory | 1976
M.N. Huxley; K. Ramachandra
in the rectangle (1/2-δ⩽σ⩽1/2+δ,T⩽t⩽2T) (where 0<δ<1/2)is ≥C(θ,δ)T logT where C(θ,δ)is a positive constant independent of T provided T ≥T0(θ,δ)a large positive constant. Theorem B.In the above theorem we can relax the condition on an to
Journal of Number Theory | 1979
K. Ramachandra