Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where K. Rutten is active.

Publication


Featured researches published by K. Rutten.


Behavioural Brain Research | 2011

Effects of the cognition impairer MK-801 on learning and memory in mice and rats.

F.J. van der Staay; K. Rutten; Christina Erb; Arjan Blokland

There is a great need for relevant animal models for investigating the effects of putative pro-cognitive compounds. Compounds that impair learning and/or memory processes without inducing adverse side effects are cognition impairers. Rats and mice with cognitive deficits induced by the prototypical N-methyl-d-aspartate (NMDA) receptor antagonist MK-801 may provide a relevant animal model based on the mechanistic approach of blocking NMDA/glutamatergic signaling. Unfortunately, the dose range over which MK-801 induces cognitive impairment without causing sensory, locomotor, or toxicological side effects is small. We provide an overview of the effects of MK-801 in different cognitive tasks and assessed whether MK-801 reliably affects the cognitive performance of mice or rats in the spatial Morris task, T-maze alternation tasks, and non-spatial passive avoidance, social, and object recognition tasks. MK-801 disrupted or retarded memory acquisition in all tasks. The Morris task, once acquired, was insensitive to MK-801 at a dose up to 0.1 mg kg(-1) body weight. Retention deficits in the passive avoidance tests were not likely to be due to MK-801-induced changes in shock sensitivity, as measured by a shock threshold test. On the basis of published evidence and the present findings, we conclude that MK-801, administered s.c. or i.p. into rodents in doses up to 0.1 mg kg(-1), appears to fulfill the criteria of our definition of a cognition impairer in rodents, without causing sensorimotor impairments and/or signs of intoxication. In addition, MK-801-treated rodents appear to fulfill the criteria of a valid animal model of cognitive dysfunctions, with robust effects across species, housing conditions, and testing paradigms.


European Journal of Pain | 2014

Burrowing as a non‐reflex behavioural readout for analgesic action in a rat model of sub‐chronic knee joint inflammation

K. Rutten; Klaus Schiene; A. Robens; A. Leipelt; T. Pasqualon; S.J. Read; Thomas Christoph

Innate responses against spontaneous pain are proposed to improve the predictive validity of preclinical analgesia models. Therefore, development and validation of novel readouts is necessary. To investigate whether innate rodent burrowing is a useful alternative behavioural readout for assessment of analgesic efficacy, a complete Freunds adjuvant (CFA)‐induced model of sub‐chronic inflammation was used to compare the effects of naproxen, ibuprofen and pregabalin in weight‐bearing (WB), open‐field (OF) and burrowing assays.


European Journal of Pharmacology | 2010

Effects of the NOP receptor agonist Ro65-6570 on the acquisition of opiate- and psychostimulant-induced conditioned place preference in rats

K. Rutten; Jean De Vry; Walter Bruckmann; Thomas M. Tzschentke

Activation of the Nociceptin/Orphanin FQ (NOP) receptor may have anti-abuse effects. The present study examined the consequence of NOP receptor activation on the rewarding effect of opiates and psychostimulants in the conditioned place preference task in rats. First, the motivational effect of the NOP receptor agonists Ro64-6198 (0.316-3.16 mg/kg i.p.) and Ro65-6570 (1-10mg/kg i.p.) when administered alone, was assessed. Ro65-6570 was selected for further drug combination studies since, unlike Ro64-6198, it was devoid of an intrinsic motivational effect. Next, the minimal effective dose to induce reward for the opiates heroin (0.1-3.16 mg/kg i.p.), morphine (1-10mg/kg i.p.), hydrocodone (0.316-10mg/kg i.p.), tilidine (1-31.6 mg/kg i.p.), hydromorphone (0.1-10mg/kg i.p.), and oxycodone (0.0316-10mg/kg i.p.), as well as for the psychostimulants cocaine (3.16-31.6 mg/kg i.p.) and dexamphetamine (0.316-3.16 mg/kg i.p.) in combination with Ro 65-6570 (0 or 3.16 mg/kg i.p.) was determined. All drugs produced conditioned place preference, and for opiates and cocaine, but not for dexamphetamine, the minimal effective dose was higher when combined with Ro65-6570 (3.16 mg/kg i.p.). Attenuation of the rewarding effect of tilidine (3.16 mg/kg i.p.) and oxycodone (1mg/kg i.p.) by Ro65-6570 (3.16 mg/kg i.p.) could be reversed by pre-treatment with the NOP receptor antagonist J-113397 (4.64 mg/kg i.p.), suggesting that the attenuating effect of Ro65-6570 on opiates is due to activation of the NOP receptor. Taken together, the present study suggests that activation of NOP receptors effectively attenuates the rewarding effect of opiates, but may be less effective in reducing psychostimulant-induced reward.


Drug and Alcohol Dependence | 2010

Pharmacological blockade or genetic knockout of the NOP receptor potentiates the rewarding effect of morphine in rats

K. Rutten; Jean De Vry; Walter Bruckmann; Thomas M. Tzschentke

The Nociceptin/OrphaninFQ (NOP) system is believed to be involved in drug abuse and addiction. We have recently demonstrated that activation of the NOP receptor, by systemic administration of the NOP receptor agonist Ro65-6570, attenuated the rewarding effect of various opioids in conditioned place preference (CPP) in rats and this attenuating effect was reversed by the NOP receptor antagonist J-113397. The present study demonstrates that co-administration of J-113397 (4.64 mg/kg, i.p.) during conditioning, facilitates morphine-induced CPP. Moreover, we found that NOP receptor knockout rats (oprl1(-/-)) are more sensitive to the rewarding effect of morphine than wildtype control rats. Thus, pharmacological or genetic inactivation of the NOP system rendered rats more susceptible to the rewarding effect of morphine. These findings support the suggestion that the endogenous NOP system attenuates the rewarding effect of opioids and therefore offers a therapeutic target for the treatment of drug abuse and addiction.


Addiction Biology | 2011

The mGluR5 antagonist 2‐methyl‐6‐(phenylethynyl)‐pyridine (MPEP) potentiates conditioned place preference induced by various addictive and non‐addictive drugs in rats

K. Rutten; Elizabeth Louise van der Kam; Jean De Vry; Walter Bruckmann; Thomas M. Tzschentke

We have recently reported that the metabotropic glutamate receptor 5 antagonist 2‐methyl‐6‐(phenylethynyl)‐pyridine (MPEP) potentiates acquisition of conditioned place preference (CPP) induced by heroin and ketamine. The present study investigated to what extent this effect of MPEP can be generalized to other classes of drugs, such as the stimulants nicotine and cocaine, and to drugs that produce CPP in the rat despite a lack of abuse potential in humans, such as buspirone and clonidine. Adult male Sprague Dawley rats were subjected to a standard unbiased CPP protocol (six conditioning sessions lasting 20 minutes for nicotine and 40 minutes for the other compounds). Rats were conditioned with either nicotine (0.05–0.2 mg/kg, subcutaneously), cocaine [1–10 mg/kg, intraperitoneally (i.p.)], buspirone (0.3–3 mg/kg, i.p.) or clonidine (0.2–0.6 mg/kg, i.p.) in combination with MPEP (0 or 10 mg/kg, i.p.). For nicotine and cocaine, the minimal effective dose to induce CPP was lowered by pre‐treatment with MPEP. While buspirone and clonidine did not induce CPP when given alone (i.e. combined with MPEP vehicle), both compounds induced CPP after pre‐treatment with MPEP. It is concluded that MPEP consistently potentiates acquisition of drug‐induced reward, independent of the mechanism of action of the co‐administered drug. We suggest that the proposed anti‐abuse effect of MPEP may be due to a substitution‐like effect.


European Journal of Pain | 2014

Pharmacological validation of a refined burrowing paradigm for prediction of analgesic efficacy in a rat model of sub-chronic knee joint inflammation

K. Rutten; A. Robens; S.J. Read; Thomas Christoph

Burrowing is an evolutionarily conserved behaviour in rodents. This study validates a refined burrowing paradigm (requiring a reduced number of animals) in a rat model of sub‐chronic knee joint inflammation and evaluates its sensitivity and specificity for analgesic drugs.


Pharmacology | 2011

Critical Evaluation of the Use of Extinction Paradigms for the Assessment of Opioid-Induced Conditioned Place Preference in Rats

K. Rutten; E.L. van der Kam; J. De Vry; Thomas M. Tzschentke

The rewarding effects of drugs of abuse are often studied by means of the conditioned place preference (CPP) paradigm. CPP is one of the most widely used models in behavioral pharmacology, yet its theoretical underpinnings are not well understood, and there are very few studies on the methodological and theoretical aspects of this model. An important drawback of the classical CPP paradigm is that it often does not show dose-dependent results. The persistence of the conditioned response, i.e. the time required until the CPP effect is extinct, may be related to the strength of conditioning, which in turn may be related to the rewarding efficacy of a drug. Resistance to extinction may therefore be a useful additional measure to quantify the rewarding effect of drugs. In the present study we examined the persistence of drug-environment associations after conditioning with morphine (1, 3 and 10 mg/kg i.p.), oxycodone (0.3, 1 and 3 mg/kg i.p.) and heroin (0.05, 0.25 and 0.5 mg/kg i.p.) by repeated retesting in the CPP apparatus (15-min sessions, 5 days/week) until the rats reached extinction (i.e. less than 55% preference over 3 consecutive sessions). Following an unbiased CPP protocol, morphine, oxycodone and heroin induced CPP with minimal effective doses of 3, 1 and 0.25 mg/kg, respectively, and with similar effect sizes for each CPP-inducing dose. The number of sessions required for extinction was positively correlated with the dose of the drug (experiment 1: 18 and 45 sessions for 3 and 10 mg/kg morphine, and 19 and 27 sessions for 1 and 3 mg/kg oxycodone; experiment 2: 12 and 24 sessions for 3 and 10 mg/kg morphine, and 10 and 14 sessions for 0.25 and 0.5 mg/kg heroin). These findings suggest that the use of an extinction paradigm can extend the quantitative assessment of the rewarding effect of drugs – however, within certain limits only. The present paradigm appears to be less suited for comparing the rewarding efficacy of different drugs due to great test-retest variability. Finally, the additional potential gain of information using this paradigm has to be weighed against the considerably large amount of additional time and effort.


Pain | 2016

Cross-centre replication of suppressed burrowing behaviour as an ethologically relevant pain outcome measure in the rat: a prospective multicentre study.

Rachel Wodarski; Ada Delaney; Camilla Ultenius; Rosie Morland; Nick Andrews; Catherine Baastrup; Luke Bryden; Ombretta Caspani; Thomas Christoph; Natalie J. Gardiner; Wenlong Huang; Jeffrey D. Kennedy; Suguru Koyama; Dominic L. Li; Marcin Ligocki; Annika Lindsten; Ian Machin; Anton Pekcec; A. Robens; Sanziana M. Rotariu; Sabrina Voß; Märta Segerdahl; Carina Stenfors; Camilla I. Svensson; Rolf-Detlef Treede; Katsuhiro Uto; Kazumi Yamamoto; K. Rutten; Andrew S.C. Rice

Abstract Burrowing, an ethologically relevant rodent behaviour, has been proposed as a novel outcome measure to assess the global impact of pain in rats. In a prospective multicentre study using male rats (Wistar, Sprague-Dawley), replication of suppressed burrowing behaviour in the complete Freund adjuvant (CFA)-induced model of inflammatory pain (unilateral, 1 mg/mL in 100 µL) was evaluated in 11 studies across 8 centres. Following a standard protocol, data from participating centres were collected centrally and analysed with a restricted maximum likelihood-based mixed model for repeated measures. The total population (TP—all animals allocated to treatment; n = 249) and a selected population (SP—TP animals burrowing over 500 g at baseline; n = 200) were analysed separately, assessing the effect of excluding “poor” burrowers. Mean baseline burrowing across studies was 1113 g (95% confidence interval: 1041-1185 g) for TP and 1329 g (1271-1387 g) for SP. Burrowing was significantly suppressed in the majority of studies 24 hours (7 studies/population) and 48 hours (7 TP, 6 SP) after CFA injections. Across all centres, significantly suppressed burrowing peaked 24 hours after CFA injections, with a burrowing deficit of −374 g (−479 to −269 g) for TP and −498 g (−609 to −386 g) for SP. This unique multicentre approach first provided high-quality evidence evaluating suppressed burrowing as robust and reproducible, supporting its use as tool to infer the global effect of pain on rodents. Second, our approach provided important informative value for the use of multicentre studies in the future.


European Journal of Pharmacology | 2014

Pharmacogenomic study of the role of the nociceptin/orphanin FQ receptor and opioid receptors in diabetic hyperalgesia

K. Rutten; Thomas M. Tzschentke; Thomas Koch; Klaus Schiene; Thomas Christoph

Targeting functionally independent receptors may provide synergistic analgesic effects in neuropathic pain. To examine the interdependency between different opioid receptors (µ-opioid peptide [MOP], δ-opioid peptide [DOP] and κ-opioid peptide [KOP]) and the nociceptin/orphanin FQ peptide (NOP) receptor in streptozotocin (STZ)-induced diabetic polyneuropathy, nocifensive activity was measured using a hot plate test in wild-type and NOP, MOP, DOP and KOP receptor knockout mice in response to the selective receptor agonists Ro65-6570, morphine, SNC-80 and U50488H, or vehicle. Nocifensive activity was similar in non-diabetic wild-type and knockout mice at baseline, before agonist or vehicle administration. STZ-induced diabetes significantly increased heat sensitivity in all mouse strains, but MOP, DOP and KOP receptor knockouts showed a smaller degree of hyperalgesia than wild-type mice and NOP receptor knockouts. For each agonist, a significant antihyperalgesic effect was observed in wild-type diabetic mice (all P<0.05 versus vehicle); the effect was markedly attenuated in diabetic mice lacking the cognate receptor compared with wild-type diabetic mice. Morphine was the only agonist that demonstrated near-full antihyperalgesic efficacy across all non-cognate receptor knockouts. Partial or near-complete reductions in efficacy were observed with Ro65-6570 in DOP and KOP receptor knockouts, with SNC-80 in NOP, MOP and KOP receptor knockouts, and with U50488H in NOP and DOP receptor knockouts. There was no evidence of NOP and MOP receptor interdependency in response to selective agonists for these receptors. These findings suggest that concurrent activation of NOP and MOP receptors, which showed functional independence, may yield an effective and favorable therapeutic analgesic profile.


Scandinavian Journal of Pain | 2015

Experimental design and reporting standards for improving the internal validity of pre-clinical studies in the field of pain: Consensus of the IMI-Europain consortium

K.L. Knopp; Carina Stenfors; Cathrine Baastrup; A.W. Bannon; M. Calvo; Ombretta Caspani; Gillian L. Currie; Nanna Brix Finnerup; Wenlong Huang; Jeffrey D. Kennedy; I. Lefevre; I. Machin; Malcolm R. Macleod; H. Rees; Andrew S.C. Rice; K. Rutten; M. Segerdahl; Jordi Serra; Rachel Wodarski; O.-G. Berge; Rolf-Detlef Treede

Abstract Background and aims Pain is a subjective experience, and as such, pre-clinical models of human pain are highly simplified representations of clinical features. These models are nevertheless critical for the delivery of novel analgesics for human pain, providing pharmacodynamic measurements of activity and, where possible, on-target confirmation of that activity. It has, however, been suggested that at least 50% of all pre-clinical data, independent of discipline, cannot be replicated. Additionally, the paucity of “negative” data in the public domain indicates a publication bias, and significantly impacts the interpretation of failed attempts to replicate published findings. Evidence suggests that systematic biases in experimental design and conduct and insufficiencies in reporting play significant roles in poor reproducibility across pre-clinical studies. It then follows that recommendations on how to improve these factors are warranted. Methods Members of Europain, a pain research consortium funded by the European Innovative Medicines Initiative (IMI), developed internal recommendations on how to improve the reliability of pre-clinical studies between laboratories. This guidance is focused on two aspects: experimental design and conduct, and study reporting. Results Minimum requirements for experimental design and conduct were agreed upon across the dimensions of animal characteristics, sample size calculations, inclusion and exclusion criteria, random allocation to groups, allocation concealment, and blinded assessment of outcome. Building upon the Animals in Research: Reportingin vivo Experiments (ARRIVE) guidelines, reporting standards were developed for pre-clinical studies of pain. These include specific recommendations for reporting on ethical issues, experimental design and conduct, and data analysis and interpretation. Key principles such as sample size calculation, a priori definition of a primary efficacy measure, randomization, allocation concealments, and blinding are discussed. In addition, considerations of how stress and normal rodent physiology impact outcome of analgesic drug studies are considered. Flow diagrams are standard requirements in all clinical trials, and flow diagrams for preclinical trials, which describe number of animals included/excluded, and reasons for exclusion are proposed. Creation of a trial registry for pre-clinical studies focused on drug development in order to estimate possible publication bias is discussed. Conclusions More systematic research is needed to analyze how inadequate internal validity and/or experimental bias may impact reproducibility across pre-clinical pain studies. Addressing the potential threats to internal validity and the sources of experimental biases, as well as increasing the transparency in reporting, are likely to improve preclinical research broadly by ensuring relevant progress is made in advancing the knowledge of chronic pain pathophysiology and identifying novel analgesics. Implications We are now disseminating these Europain processes for discussion in the wider pain research community. Any benefit from these guidelines will be dependent on acceptance and disciplined implementation across pre-clinical laboratories, funding agencies and journal editors, but it is anticipated that these guidelines will be a first step towards improving scientific rigor across the field of pre-clinical pain research.

Collaboration


Dive into the K. Rutten's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge