K. S. Dwarakanath
Raman Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by K. S. Dwarakanath.
Journal of Astrophysics and Astronomy | 1984
G. Srinivasan; D. Bhattacharya; K. S. Dwarakanath
We conclude that pulsar-driven supernova remnants (SNRs) are extremely rare objects. Indeed an analysis of the known sample of plerions suggests a very low birthrate ∼ 1 in 240 years. Long-lived and bright plerions like the Crab nebula are likely to be produced only when the pulsar has an initial period ∼ 10–20 milliseconds and a field ∼ 1012 G. Such pulsars inside rapidly expanding shell remnants should also produce detectable plerions. The extreme rarity of SNRs with such hybrid morphology leads us to conclude that these pulsars must have been born with an initial period larger than ∼ 35–70 milliseconds.
The Astronomical Journal | 2007
C. L. Carilli; Ran Wang; M. B. van Hoven; K. S. Dwarakanath; Jayaram N. Chengalur; Stuart Wyithe
We have searched for H I 21 cm absorption toward the two brightest radio AGNs at high redshift, J0924-2201 at z = 5.20 and J0913+5919 at z = 5.11, using the Giant Metrewave Radio Telescope. These data set a 3 σ upper limit to absorption of <30% at 40 km s-1 resolution for the 30 mJy source J0913+5919, and <3% for the 0.55 Jy source J0924-2201 at 20 km s-1 resolution. For J0924-2201, limits to broader lines at the few percent level are set by residual spectral baseline structure. For J0924-2201 the column density limit per 20 km s -1 channel is N(H ) < 2.2 × 1018Ts cm-2 over a velocity range of -700 to +1180 km s-1 centered on the galaxy redshift determined through CO emission, assuming a covering factor of 1. For J0913+5919 the column density limit per 40 km s-1 channel is N(H ) < 2.2 × 1019Ts cm-2 within ±2400 km s-1 of the optical redshift. These data rule out any cool, high column density H I clouds within roughly ±1000 km s-1 of the galaxies, as are often seen in compact steep-spectrum radio AGNs, or clouds that might correspond to residual gas left over from cosmic reionization.
Journal of Astrophysics and Astronomy | 1982
K. S. Dwarakanath; R. K. Shevgaonkar; Ch. V. Sastry
We have observed the extended supernova remnants HB 9 (G 160.5 + 2.8) and IC 443 (G 189.1 + 2.9) at 34.5 MHz with a resolution of 26 arcmin × 40 arcmin. A map of HB 9 is presented. The integrated flux density of HB 9 at 34.5 MHz is 750 ± 150 Jy. The spectral index in the frequency range from 34.5 MHz to 2700 MHz is found to be constant (- 0.58 ± 0.06) without any spectral break such as was reported earlier by Willis (1973). There is no significant variation of the spectral index across the remnant. The integrated flux density of IC 443 at 34.5 MHz is 440 ± 88 Jy. The spectral index in the frequency range from 20 MHz to 10700 MHz is - 0.36 ± 0.04. The reduction in flux at very low frequencies (10 MHz) is attributable to free-free absorption in the interstellar medium and/or in the H II region S 249.
Journal of Astrophysics and Astronomy | 2004
Rekhesh Mohan; K. S. Dwarakanath; G. Srinivasan
We have carried out a sensitive high-latitude (|b| > 15°) HI 21 cm-line absorption survey towards 102 sources using the GMRT. With a 3σ detection limit in optical depth of ∼ 0.01, this is the most sensitive HI absorption survey. We detected 126 absorption features most of which also have corresponding HI emission features in the Leiden Dwingeloo Survey of Galactic neutral Hydrogen. The histogram of random velocities of the absorption features is well-fit by two Gaussians centered at V1sr ∼ 0 km s−1 with velocity dispersions of 7.6 ± 0.3 km s−1 and 21 ± 4 km s−1 respectively. About 20% of the HI absorption features form the larger velocity dispersion component. The HI absorption features forming the narrow Gaussian have a mean optical depth of 0.20 ± 0.19, a mean HI column density of (1.46 ± 1.03) × 1020 cm−2, and a mean spin temperature of 121 ± 69 K. These HI concentrations can be identified with the standard HI clouds in the cold neutral medium of the Galaxy. The HI absorption features forming the wider Gaussian have a mean optical depth of 0.04 ± 0.02, a mean HI column density of (4.3 ± 3.4) × 1019 cm−2, and a mean spin temperature of 125 ± 82 K. The HI column densities of these fast clouds decrease with their increasing random velocities. These fast clouds can be identified with a population of clouds detected so far only in optical absorption and in HI emission lines with a similar velocity dispersion. This population of fast clouds is likely to be in the lower Galactic Halo.
Journal of Astrophysics and Astronomy | 2016
Ruta Kale; K. S. Dwarakanath; Dharam Vir Lal; Joydeep Bagchi; Surajit Paul; Siddharth Malu; Abhirup Datta; Viral Parekh; Prateek Sharma; Mamta Pandey-Pommier
The intra-cluster and inter-galactic media that pervade the large scale structure of the Universe are known to be magnetized at sub-micro Gauss to micro Gauss levels and to contain cosmic rays. The acceleration of cosmic rays and their evolution along with that of magnetic fields in these media is still not well understood. Diffuse radio sources of synchrotron origin associated with the Intra-Cluster Medium (ICM) such as radio halos, relics and mini-halos are direct probes of the underlying mechanisms of cosmic ray acceleration. Observations with radio telescopes such as the Giant Metrewave Radio Telescope, the Very Large Array and the Westerbork Synthesis Radio Telescope have led to the discoveries of about 80 such sources and allowed detailed studies in the frequency range 0.15–1.4 GHz of a few. These studies have revealed scaling relations between the thermal and non-thermal properties of clusters and favour the role of shocks in the formation of radio relics and of turbulent re-acceleration in the formation of radio halos and mini-halos. The radio halos are known to occur in merging clusters and mini-halos are detected in about half of the cool-core clusters. Due to the limitations of current radio telescopes, low mass galaxy clusters and galaxy groups remain unexplored as they are expected to contain much weaker radio sources. Distinguishing between the primary and the secondary models of cosmic ray acceleration mechanisms requires spectral measurements over a wide range of radio frequencies and with high sensitivity. Simulations have also predicted weak diffuse radio sources associated with filaments connecting galaxy clusters. The Square Kilometre Array (SKA) is a next generation radio telescope that will operate in the frequency range of 0.05–20 GHz with unprecedented sensitivities and resolutions. The expected detection limits of SKA will reveal a few hundred to thousand new radio halos, relics and mini-halos providing the first large and comprehensive samples for their study. The wide frequency coverage along with sensitivity to extended structures will be able to constrain the cosmic ray acceleration mechanisms. The higher frequency (>5 GHz) observations will be able to use the Sunyaev–Zel’dovich effect to probe the ICM pressure in addition to tracers such as lobes of head–tail radio sources. The SKA also opens prospects to detect the ‘off-state’ or the lowest level of radio emission from the ICM predicted by the hadronic models and the turbulent re-acceleration models.
Journal of Astrophysics and Astronomy | 1982
G. Srinivasan; K. S. Dwarakanath
We have reanalysed a homogeneous catalogue of shell-type supernova remnants and we find that the radio data are consistent with a birthrate of one in 22±3 yr. Our approach is based on the secular decrease of surface brightness of the historical remnants whose ages are precisely known. The abovementioned birthrate is significantly higher than most previous estimates which range from one in 50–150 yr, and is consistent with the supernova rate in our galaxy derived from historical observations, as well as with recent estimates of the pulsar birthrate.
Journal of Astrophysics and Astronomy | 2004
Rekhesh Mohan; K. S. Dwarakanath; G. Srinivasan
We have used the Giant Meterwave Radio Telescope (GMRT) to measure the Galactic HI 21-cm line absorption towards 102 extragalactic radio continuum sources, located at high (|b| > 15°) Galactic latitudes. The Declination coverage of the present survey is δ}> - 45°. With a mean rms optical depth of ∼ 0.003, this is the most sensitive Galactic HI 21-cm line absorption survey to date. To supplement the absorption data, we have extracted the HI 21-cm line emission profiles towards these 102 lines of sight from the Leiden Dwingeloo Survey of Galactic neutral hydrogen. We have carried out a Gaussian fitting analysis to identify the discrete absorption and emission components in these profiles. In this paper, we present the spectra and the components. A subsequent paper will discuss the interpretation of these results.
Journal of Astrophysics and Astronomy | 2004
K. S. Dwarakanath; W. M. Goss; Jun-Hui Zhao; Cornelia Chesley Lang
We have imaged a region of ∼ 5′ extent surrounding Sgr A* in the HI 21 cm-line absorption using the Very Large Array. A Gaussian decomposition of the optical depth spectra at positions within ∼ 2′ (∼ 5 pc at 8.5 kpc) of Sgr A* detects a wide line underlying the many narrow absorption lines. The wide line has a mean peak optical depth of 0.32 ± 0.12 centered at a mean velocity of V1sr = −4 ± 15 km s{−1}. The mean full width at half maximum is 119 ± 42 km s−1. Such a wide line is absent in the spectra at positions beyond ∼ 2′ from Sgr A*. The position-velocity diagrams in optical depth reveal that the wide line originates in various components of the circumnuclear disk (radius ∼ 1.3′ ) surrounding Sgr A*. These components contribute to the optical depth of the wide line in different velocity ranges. The position-velocity diagrams do not reveal any diffuse feature which could be attributed to a large number of HI clouds along the line of sight to Sgr A*. Consequently, the wide line has no implications either to a global population of shocked HI clouds in the Galaxy or to the energetics of the interstellar medium as was earlier thought.
Journal of Astrophysics and Astronomy | 2001
Rekhesh Mohan; K. S. Dwarakanath; G. Srinivasan; Jayaram N. Chengalur
Nearby interstellar clouds with high (|ν|≥10km s−1) random velocities although easily detected in NaI and CaII lines have hitherto not been detected (in emission or absorption) in the HI 21cm line. We describe here deep Giant Metrewave Radio Telescope (GMRT) HI absorption observations toward radio sources with small angular separation from bright O and B stars whose spectra reveal the presence of intervening high random velocity CaII absorbing clouds. In 5 out of the 14 directions searched we detect HI 21cm absorption features from these clouds. The mean optical depth of these detections is ∼0.09 and FWHM is ∼10km s−1, consistent with absorption arising from CNM clouds.
Journal of Astrophysics and Astronomy | 1998
Jayadev Rajagopal; G. Srinivasan; K. S. Dwarakanath
This investigation is aimed at clarifying the nature of the interstellar gas seen in absorption against bright O and B stars. Towards this end we have obtained for the first time HI absorption spectra towards radio sources very close to the lines of sight towards twenty five bright stars previously studied. In this paper we describe the selection criteria, the details regarding our observations, and finally present the absorption spectra. In the accompanying paper we analyse the results and draw conclusions.