Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where K. Stamatelatou is active.

Publication


Featured researches published by K. Stamatelatou.


Energy and Environmental Science | 2013

Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective

Carol Sze Ki Lin; Lucie A. Pfaltzgraff; Lorenzo Herrero-Davila; Egid B. Mubofu; Solhy Abderrahim; James H. Clark; Apostolis A. Koutinas; Nikolaos Kopsahelis; K. Stamatelatou; Fiona Dickson; Samarthia Thankappan; Zahouily Mohamed; Robert Brocklesby; Rafael Luque

Increasing demand for fuels and chemicals, driven by factors including over-population, the threat of global warming and the scarcity of fossil resources, strains our resource system and necessitates the development of sustainable and innovative strategies for the chemical industry. Our society is currently experiencing constraints imposed by our resource system, which drives industry to increase its overall efficiency by improving existing processes or finding new uses for waste. Food supply chain waste emerged as a resource with a significant potential to be employed as a raw material for the production of fuels and chemicals given the abundant volumes globally generated, its contained diversity of functionalised chemical components and the opportunity to be utilised for higher value applications. The present manuscript is aimed to provide a general overview of the current and most innovative uses of food supply chain waste, providing a range of worldwide case-studies from around the globe. These studies will focus on examples illustrating the use of citrus peel, waste cooking oil and cashew shell nut liquid in countries such as China, the UK, Tanzania, Spain, Greece or Morocco. This work emphasises 2nd generation food waste valorisation and re-use strategies for the production of higher value and marketable products rather than conventional food waste processing (incineration for energy recovery, feed or composting) while highlighting issues linked to the use of food waste as a sustainable raw material. The influence of food regulations on food supply chain waste valorisation will also be addressed as well as our societys behavior towards food supply chain waste. “There was no ways of dealing with it that have not been known for thousands of years. These ways are essentially four: dumping it, burning it, converting it into something that can be used again, and minimizing the volume of material goods – future garbage – that is produced in the first place.” William Rathje on waste (1945–2012) – Director of the Tucson Garbage project.


Bioresource Technology | 2009

Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches.

Nikolaos Venetsaneas; Georgia Antonopoulou; K. Stamatelatou; Michael Kornaros; G. Lyberatos

This study focuses on the exploitation of cheese whey as a source for hydrogen and methane, in a two-stage continuous process. Mesophilic fermentative hydrogen production from undiluted cheese whey was investigated at a hydraulic retention time (HRT) of 24 h. Alkalinity addition (NaHCO(3)) or an automatic pH controller were used, to maintain the pH culture at a constant value of 5.2. The hydrogen production rate was 2.9+/-0.2 L/Lreactor/d, while the yield of hydrogen produced was approximately 0.78+/-0.05 mol H(2)/mol glucose consumed, with alkalinity addition, while the respective values when using pH control were 1.9+/-0.1 L/Lreactor/d and 0.61+/-0.04 mol H(2)/mol glucose consumed. The corresponding yields of hydrogen produced were 2.9 L of H(2)/L cheese whey and 1.9 L of H(2)/L cheese whey, respectively. The effluent from the hydrogenogenic reactor was further digested to biogas in a continuous mesophilic anaerobic bioreactor. The anaerobic digester was operated at an HRT of 20 d and produced approximately 1L CH(4)/d, corresponding to a yield of 6.7 L CH(4)/L of influent. The chemical oxygen demand (COD) elimination reached 95.3% demonstrating that cheese whey could be efficiently used for hydrogen and methane production, in a two-stage process.


Bioresource Technology | 2009

Hydrogen and methane production through two-stage mesophilic anaerobic digestion of olive pulp

Eleni C. Koutrouli; Haralabos Kalfas; Hariklia N. Gavala; Ioannis V. Skiadas; K. Stamatelatou; G. Lyberatos

The present study focused on the anaerobic biohydrogen production from olive pulp (two phase olive mill wastes, TPOMW) and the subsequent anaerobic treatment of the effluent for methane production under mesophilic conditions in a two-stage process. Biohydrogen production from water-diluted (1:4) olive pulp was investigated at hydraulic retention times (HRT) of 30 h, 14.5 h and 7.5 h while methane production from the effluent of hydrogenogenic reactor was studied at 20 d, 15 d, 10d and 5d HRT. In comparison with previous studies, it has been shown that the thermophilic hydrogen production process was more efficient than the mesophilic one in both hydrogen production rate and yield. The methanogenic reactor was successfully operated at 20, 15 and 10 days HRT while it failed when an HRT of 5 days was applied. Methane productivity reached the maximum value of 1.13+/-0.08 L/L/d at 10 days HRT whereas the methane yield increased with the HRT. The Anaerobic Digestion Model no. 1 (ADM1) was applied to the obtained experimental data from the methanogenic reactor to simulate the digester response at all HRT tested. The ability of the model to predict the experimental results was evident even in the case of the process failure, thus implying that the ADM1 could be a valuable tool for process design even in the case of a complex feedstock. In general, the two-stage anaerobic digestion proved to be a stable, reliable and effective process for energy recovery and stabilization treatment of olive pulp.


Bioresource Technology | 2009

Exploitation of olive oil mill wastewater for combined biohydrogen and biopolymers production

Ioanna Ntaikou; C. Kourmentza; Ec Koutrouli; K. Stamatelatou; A. Zampraka; Michael Kornaros; G. Lyberatos

The present study aimed to the investigation of the feasibility of the combined biohydrogen and biopolymers production from OMW (Olive oil Mill Wastewater), using a two stage system. H(2) and volatile fatty acids (VFAs) were produced via anaerobic fermentation and subsequently the acidified wastewater was used as substrate for aerobic biodegradable polymer production. Two different bioreactors, one of CSTR type and a SBR were used for the anaerobic and the aerobic process respectively. The anaerobic reactor was operated at different hydraulic retention times (HRTs) with OMW, diluted 1:4 (v/v) with tap water, as feed. The main VFAs produced were acetate, butyrate and propionate, in different ratios depending on the HRT. Valerate, isovalerate and isobutyrate were also detected in small quantities. Selective effluents of the acidogenic/hydrogen producing reactor were subsequently used as feed for the aerobic reactor. The aerobic reactor was inoculated with an enriched PHAs producing bacteria culture, and was operated in sequential cycles of nitrogen offer (growth phase) and nitrogen limitation (PHAs accumulation phase). The operational program of the SBR was determined according to the results from batch test, and its performance was evaluated for a period of 100 days. During the accumulation phase butyrate was consumed preferably, indicating that the dominant PHA produced is polyhydroxybutyrate. The higher yield of PHAs observed was 8.94% (w/w) of dry biomass weight.


Advances in Biochemical Engineering \/ Biotechnology | 2003

Monitoring and control of anaerobic reactors.

Peter Frode Pind; Irini Angelidaki; Birgitte Kiær Ahring; K. Stamatelatou; G. Lyberatos

The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process measurements are reviewed in detail. In the sequel, possible manipulated variables, such as the hydraulic retention time, the organic loading rate, the sludge retention time, temperature, pH and alkalinity are evaluated with respect to the two main reactor types: high-rate and low-rate. Finally, the different control approaches that have been used are comprehensively described. These include simple and adaptive controllers, as well as more recent developments such as fuzzy controllers, knowledge-based controllers and controllers based on neural networks.


Bioresource Technology | 2009

On the fate of LAS, NPEOs and DEHP in municipal sewage sludge during composting

Constantina Pakou; Michael Kornaros; K. Stamatelatou; G. Lyberatos

The fate of hydrophobic xenobiotic pollutants such as linear alkylbenzene sulfonates (LAS), nonylphenol ethoxylates (NPEO) and di-ethyl-hexyl phthalate (DEHP) during sewage sludge composting was addressed in this work. The experiments were conducted in a fully automated in-vessel autothermal composting system which was fed with a mixture of primary and secondary sludge and manure. The mixture composition was determined to achieve satisfactory humidity, C/N ratio and free air space (FAS). The effect of various parameters, such as the initial xenobiotic concentration, the presence of multiple xenobiotic compounds and the temperature of composting material sustained during the process on the xenobiotics biodegradation kinetics was investigated. It was generally established that significant xenobiotic reduction is achievable through composting under all conditions tested. According to the obtained results, the presence of LAS, NPEO and DEHP even at higher concentrations was not inhibitory to the bioprocess. However, the presence of multiple xenobiotic compounds such as NPEO, NP and DEHP in the sludge can influence LAS removal during LAS composting.


Bioresource Technology | 2008

The effect of pharmaceuticals on the kinetics of methanogenesis and acetogenesis

M.S. Fountoulakis; K. Stamatelatou; G. Lyberatos

In this study, the widely used anaerobic digestion model (ADM1) was used in order to simulate the inhibition of three pharmaceuticals, propranolol hydrochloride, ofloxacin and diclofenac sodium, on two groups of microorganisms, acetogens and acetoclastic methanogens, the most sensitive microorganisms groups involved in the anaerobic digestion process. The specific maximum consumption rate and saturation constant of acetate and propionate degraders were estimated through fitting the model to experimental data taken from continuous and batch experiments. A modified non-competitive inhibition function was used, and the inhibition constants were estimated using data from Batch experiments conducted at various concentrations of pharmaceuticals using enriched cultures with propionate and acetate degraders. It was found that propranolol hydrochloride was the most inhibitory pharmaceutical to both microorganisms groups.


Bioresource Technology | 2003

Performance of a glucose fed periodic anaerobic baffled reactor under increasing organic loading conditions: 1. Experimental results

K. Stamatelatou; V.A. Vavilin; G. Lyberatos

The influence of the organic loading rate on the performance of an innovative reactor, the periodic anaerobic baffled reactor (PABR) was examined. A laboratory-scale PABR of four compartments being fed with a glucose based synthetic medium performed with high stability while the feed organic load was doubled from 12.5 to 25 and then to 50 gCOD/l. Finally the feed concentration was increased to 75 gCOD/l. The successive step changes in the feed concentration lasted for 20, 15, and 7 d, respectively. The COD removal efficiency of the PABR was satisfactory in the first two transitions (approximately 97.5 and 96%). In the third transition (OLR=18.75 gCOD/l/d) the reactor failed as the pH dropped to 4. The concentrations of butyric and valeric acids increased as the organic loading was increased and eventually they became greater than the concentration of acetic and propionic acids.


Bioresource Technology | 2003

Performance of a glucose fed periodic anaerobic baffled reactor under increasing organic loading conditions: 2. Model prediction.

K. Stamatelatou; Ljudmila Ya. Lokshina; V.A. Vavilin; G. Lyberatos

A model was developed for the anaerobic digestion of a glucose-based medium in an innovative high-rate reactor, the periodic anaerobic baffled reactor (PABR). The model considers each PABR compartment as two variable volume interacting sections, of constant total volume, one with high solids and one with low solids concentration, with the gas and liquid flows influencing the material flows between the two sections. For the simulation of glucose degradation, the biomass was divided into acidogenic, acetogenic and methanogenic groups of microorganisms. The kinetic part of the model accounted for possible inhibition of acidogenesis, acetogenesis and methanogenesis by volatile fatty acids. The model succeeded in predicting the reactor performance upon step increases in the organic loading rate.


IFAC Proceedings Volumes | 2004

Robust Global Stabilization of Continuous Bioreactors

Lemonia Syrou; Iasson Karafyllis; K. Stamatelatou; G. Lyberatos; Costas Kravaris

Abstract This paper studies the problem of designing controllers for enlarging the stability region of continuous stirred microbial bioreactors. A specific application is in anaerobic digestion, where the stability region can be very small if the operating steady state is selected to maximize the methane production rate. A control Lyapunov function approach is followed to construct a globally stabilizing state feedback control law. This turns out to be proportional output feedback in the case of anaerobic digestion, where the measurement is the methane production rate. The robustness properties of the feedback controller are also investigated. For situations of large, measurable changes in the organic load of the bioreactor, a feedforward measurement is incorporated in the control law, leading to improved robustness margin.

Collaboration


Dive into the K. Stamatelatou's collaboration.

Top Co-Authors

Avatar

G. Lyberatos

National Technical University of Athens

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irini Angelidaki

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ioannis V. Skiadas

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

N. Christensen

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge