Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where K. Tritz is active.

Publication


Featured researches published by K. Tritz.


Nuclear Fusion | 2010

Advances in global MHD mode stabilization research on NSTX

Steven Anthony Sabbagh; J.W. Berkery; R.E. Bell; J. Bialek; S.P. Gerhardt; J. Menard; R. Betti; D.A. Gates; B. Hu; O. Katsuro-Hopkins; Benoit P. Leblanc; F. M. Levinton; J. Manickam; K. Tritz; H. Yuh

Stabilizing modes that limit plasma beta and reduce their deleterious effect on plasma rotation are key goals for the efficient operation of a fusion reactor. Passive stabilization and active control of global kink/ballooning modes and resistive wall modes (RWMs) have been demonstrated on NSTX and research is now advancing towards understanding the stabilization physics and reliably maintaining the high beta plasma for confident extrapolation to ITER and a fusion component test facility based on the spherical torus. Active n = 1 control experiments with an expanded sensor set, combined with low levels of n = 3 field phased to reduce error fields, reduced resonant field amplification and maintained plasma rotation, exceeded normalized beta = 6 and produced record discharge durations limited by magnet system constraints. Details of the observed RWM dynamics during active control show the mode being converted to a rotating kink that stabilizes or saturates and may lead to tearing modes. Discharges with rotation reduced by n = 3 magnetic braking suffer beta collapse at normalized beta = 4.2 approaching the no-wall limit, while normalized beta greater than 5.5 has been reached in these plasmas with n = 1 active control, in agreement with the single-mode RWM theory. Advanced state-space control algorithms proposed for RWM control in ITER theoretically yield significant stabilization improvements. Values of relative phase between the measured n = 1 mode and the applied correction field that experimentally produce stability/instability agree with RWM control modelling. Experimental mode destabilization occurs over a large range of plasma rotation, challenging the notion of a simple scalar critical rotation speed defining marginal stability. Stability calculations including kinetic modifications to the ideal MHD theory are applied to marginally stable experimental equilibria. Plasma rotation and collisionality variations are examined in the calculations. Intermediate rotation levels are less stable, consistent with experimental observations. Trapped ion resonances play a key role in this result. Recent experiments have demonstrated magnetic braking by non-resonant n = 2 fields. The observed rotation damping profile is broader than found for n = 3 fields. Increased ion temperature in the region of maximum braking torque increases the observed rate of rotation damping, consistent with the theory of neoclassical toroidal viscosity at low collisionality.


Nuclear Fusion | 2006

Resistive wall stabilized operation in rotating high beta NSTX plasmas

Steven Anthony Sabbagh; A. Sontag; J. Bialek; D.A. Gates; A.H. Glasser; J. Menard; W. Zhu; M.G. Bell; R.E. Bell; Anders Bondeson; C.E. Bush; James D. Callen; M. S. Chu; C. C. Hegna; S.M. Kaye; L. L. Lao; Benoit P. Leblanc; Yueqiang Liu; R. Maingi; D. Mueller; K. C. Shaing; D. Stutman; K. Tritz; Cheng Zhang

The National Spherical Torus Experiment (NSTX) has demonstrated the advantages of low aspect ratio geometry in accessing high toroidal and normalized plasma beta, and βN ≡ 10 8〈βt〉 aB0/Ip. Experiments have reached βt = 39% and βN = 7.2 through boundary and profile optimization. High βN plasmas can exceed the ideal no-wall stability limit, βNno-wall, for periods much greater than the wall eddy current decay time. Resistive wall mode (RWM) physics is studied to understand mode stabilization in these plasmas. The toroidal mode spectrum of unstable RWMs has been measured with mode number n up to 3. The critical rotation frequency of Bondeson-Chu, Ωcrit = ωA/(4q2), describes well the RWM stability of NSTX plasmas when applied over the entire rotation profile and in conjunction with the ideal stability criterion. Rotation damping and global rotation collapse observed in plasmas exceeding βNno-wall differs from the damping observed during tearing mode activity and can be described qualitatively by drag due to neoclassical toroidal viscosity in the helically perturbed field of an ideal displacement. Resonant field amplification of an applied n = 1 field perturbation has been measured and increases with increasing βN. Equilibria are reconstructed including measured ion and electron pressure, toroidal rotation and flux isotherm constraint in plasmas with core rotation ω/ωA up to 0.48. Peak pressure shifts of 18% of the minor radius from the magnetic axis have been reconstructed.


Physics of Plasmas | 2006

Collective fast ion instability-induced losses in National Spherical Tokamak Experiment

E.D. Fredrickson; R.E. Bell; D. S. Darrow; G. Y. Fu; N.N. Gorelenkov; Benoit P. Leblanc; S. S. Medley; J. Menard; H. Park; A.L. Roquemore; W.W. Heidbrink; S.A. Sabbagh; D. Stutman; K. Tritz; N.A. Crocker; S. Kubota; W. A. Peebles; K.C. Lee; F. M. Levinton

A wide variety of fast ion driven instabilities are excited during neutral beam injection (NBI) in the National Spherical Torus Experiment (NSTX) [Nucl. Fusion 40, 557 (2000)] due to the large ratio of fast ion velocity to Alfven velocity, Vfast∕VAlfven, and high fast ion beta. The ratio Vfast∕VAlfven in ITER [Nucl. Fusion 39, 2137 (1999)] and NSTX is comparable. The modes can be divided into three categories: chirping energetic particle modes (EPM) in the frequency range 0 to 120kHz, the toroidal Alfven eigenmodes (TAE) with a frequency range of 50kHz to 200kHz, and the compressional and global Alfven eigenmodes (CAE and GAE, respectively) between 300kHz and the ion cyclotron frequency. Fast ion driven modes are of particular interest because of their potential to cause substantial fast ion losses. In all regimes of NBI heated operation we see transient neutron rate drops, correlated with bursts of TAE or fishbone-like EPMs. The fast ion loss events are predominantly correlated with the EPMs, although ...


Nuclear Fusion | 2007

Confinement and local transport in the National Spherical Torus Experiment (NSTX)

S.M. Kaye; F. M. Levinton; D. Stutman; K. Tritz; H. Yuh; M.G. Bell; R.E. Bell; C. W. Domier; D.A. Gates; W. Horton; J.‐H. Kim; Benoit P. Leblanc; N.C. Luhmann; R. Maingi; E. Mazzucato; J. Menard; D. R. Mikkelsen; D. Mueller; H. Park; G. Rewoldt; S.A. Sabbagh; David R. Smith; W. Wang

The NSTX operates at low aspect ratio (R/a ~ 1.3) and high beta (up to 40%), allowing tests of global confinement and local transport properties that have been established from higher aspect ratio devices. The NSTX plasmas are heated by up to 7 MW of deuterium neutral beams with preferential electron heating as expected for ITER. Confinement scaling studies indicate a strong BT dependence, with a current dependence that is weaker than that observed at higher aspect ratio. Dimensionless scaling experiments indicate a strong increase in confinement with decreasing collisionality and a weak degradation with beta. The increase in confinement with BT is due to reduced transport in the electron channel, while the improvement with plasma current is due to reduced transport in the ion channel related to the decrease in the neoclassical transport level. Improved electron confinement has been observed in plasmas with strong reversed magnetic shear, showing the existence of an electron internal transport barrier (eITB). The development of the eITB may be associated with a reduction in the growth of microtearing modes in the plasma core. Perturbative studies show that while L-mode plasmas with reversed magnetic shear and an eITB exhibit slow changes in across the profile after the pellet injection, H-mode plasmas with a monotonic q-profile and no eITB show no change in this parameter after pellet injection, indicating the existence of a critical gradient that may be related to the q-profile. Both linear and non-linear simulations indicate the potential importance of electron temperature gradient (ETG) modes at the lowest BT. Localized measurements of high-k fluctuations exhibit a sharp decrease in signal amplitude levels across the L–H transition, associated with a decrease in both ion and electron transport, and a decrease in calculated linear microinstability growth rates across a wide k-range, from the ion temperature gradient/TEM regime up to the ETG regime.


Nuclear Fusion | 2005

Internal kink mode dynamics in high-β NSTX plasmas

J. Menard; R.E. Bell; E.D. Fredrickson; D.A. Gates; S.M. Kaye; Benoit P. Leblanc; R. Maingi; S. S. Medley; W. Park; S.A. Sabbagh; A. Sontag; D. Stutman; K. Tritz; W. Zhu

Saturated internal kink modes have been observed in many of the highest toroidal β discharges of the National Spherical Torus Experiment (NSTX). These modes often cause rotation flattening in the plasma core, can degrade fast-ion confinement and in some cases contribute to the complete loss of plasma angular momentum and stored energy. Characteristics of the modes are measured using soft x-ray, kinetic profile and magnetic diagnostics. Toroidal flows approaching Alfvenic speeds, island pressure peaking and enhanced viscous and diamagnetic effects associated with high-β may contribute to mode nonlinear stabilization. These saturation mechanisms are investigated for NSTX parameters and compared with experimental data.


Nuclear Fusion | 2007

Investigation of Resistive Wall Mode Stabilization Physics in High-beta Plasmas Using Applied Non-axisymmetric Fields in NSTX

A. Sontag; Steven Anthony Sabbagh; W. Zhu; J. Menard; R.E. Bell; J. Bialek; M.G. Bell; D.A. Gates; A.H. Glasser; Benoit P. Leblanc; K. C. Shaing; D. Stutman; K. Tritz

The National Spherical Torus Experiment (NSTX) offers an operational space characterized by high-beta (βt = 39%, βN > 7, βN/βno-wall N > 1.5) and low aspect ratio (A > 1.27) to leverage the plasma parameter dependences of RWM stabilization and plasma rotation damping physics giving greater confidence for extrapolation to ITER. Significant new capability for RWM research has been added to the device with the commissioning of a set of six nonaxisymmetric magnetic field coils, allowing generation of fields with dominant toroidal mode number, n, of 1–3. These coils have been used to study the dependence of resonant field amplification on applied field frequency and RWMstabilization physics by reducing the toroidal rotation profile belowits steady-state value through non-resonant magnetic braking. Modification of plasma rotation profiles shows that rotation outside q = 2.5 is not required for passive RWM stability and there is large variation in the RWM critical rotation at the q = 2 surface, both of which are consistent with distributed dissipation models.


Physics of Plasmas | 2015

High performance discharges in the Lithium Tokamak eXperiment with liquid lithium wallsa)

J.C. Schmitt; R. E. Bell; D.P. Boyle; B. Esposti; R. Kaita; Thomas Kozub; B. LeBlanc; M. Lucia; R. Maingi; R. Majeski; Enrique Merino; S. Punjabi-Vinoth; G. Tchilingurian; A. Capece; Bruce E. Koel; J. Roszell; T. M. Biewer; T.K. Gray; S. Kubota; P. Beiersdorfer; K. Widmann; K. Tritz

The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10× compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid, exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started.


Physics of Plasmas | 2013

Particle control and plasma performance in the Lithium Tokamak eXperimenta)

R. Majeski; T. Abrams; D.P. Boyle; E. Granstedt; J. Hare; C. M. Jacobson; R. Kaita; Thomas Kozub; B. LeBlanc; D. P. Lundberg; M. Lucia; Enrique Merino; J.C. Schmitt; D.P. Stotler; T. M. Biewer; J.M. Canik; T.K. Gray; R. Maingi; A. G. McLean; S. Kubota; W. A. Peebles; P. Beiersdorfer; J. H. T. Clementson; K. Tritz

The Lithium Tokamak eXperiment is a small, low aspect ratio tokamak [Majeski et al., Nucl. Fusion 49, 055014 (2009)], which is fitted with a stainless steel-clad copper liner, conformal to the last closed flux surface. The liner can be heated to 350 °C. Several gas fueling systems, including supersonic gas injection and molecular cluster injection, have been studied and produce fueling efficiencies up to 35%. Discharges are strongly affected by wall conditioning. Discharges without lithium wall coatings are limited to plasma currents of order 10 kA, and discharge durations of order 5 ms. With solid lithium coatings discharge currents exceed 70 kA, and discharge durations exceed 30 ms. Heating the lithium wall coating, however, results in a prompt degradation of the discharge, at the melting point of lithium. These results suggest that the simplest approach to implementing liquid lithium walls in a tokamak—thin, evaporated, liquefied coatings of lithium—does not produce an adequately clean surface.


Nuclear Fusion | 2009

Impurity transport studies in NSTX neutral beam heated H-mode plasmas

L. Delgado-Aparicio; D. Stutman; K. Tritz; M. Finkenthal; S.M. Kaye; R.E. Bell; R. Kaita; Benoit P. Leblanc; F. M. Levinton; J. Menard; S. Paul; David R. Smith; H. Yuh

The first experimental assessment of low-Z impurity transport in a neutral beam heated, high-confinement H-mode plasma sustained in a low-field, low-aspect ratio spherical tokamak, was performed at the National Spherical Torus Experiment (NSTX). The injected impurities penetrate to the core on a hundred millisecond time scale, indicating a low core particle diffusivity (1 m2 s−1) in good agreement with the values predicted by neoclassical transport theory. In addition, a fixed q-profile magnetic field scan that showed reduced impurity penetration at high fields is also reported. This result suggests that anomalous ion particle transport associated with turbulent long-wavelength electrostatic instabilities must be largely suppressed in the NSTX core.


Nuclear Fusion | 2010

Anomalous electron transport due to multiple high frequency beam ion driven Alfvén eigenmodes

N.N. Gorelenkov; D. Stutman; K. Tritz; Allen H. Boozer; L. Delgado-Aparicio; E.D. Fredrickson; S.M. Kaye; R. B. White

We report on the simulations of recently observed correlations of the core electron transport with the sub-thermal ion cyclotron frequency instabilities in low aspect ratio plasmas of the National Spherical Torus Experiment. In order to model the electron transport the guiding centre code ORBIT is employed. A spectrum of test functions of multiple core localized global shear Alfven eigenmode (GAE) instabilities based on a previously developed theory and experimental observations is used to examine the electron transport properties. The simulations exhibit thermal electron transport induced by electron drift orbit stochasticity in the presence of multiple core localized GAE.

Collaboration


Dive into the K. Tritz's collaboration.

Top Co-Authors

Avatar

D. Stutman

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

M. Finkenthal

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

R. Kaita

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

R. Maingi

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benoit P. Leblanc

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

S.M. Kaye

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. Menard

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R.E. Bell

Princeton Plasma Physics Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge