Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where K. Varadaraj is active.

Publication


Featured researches published by K. Varadaraj.


Gene | 1994

Denaturants or cosolvents improve the specificity of PCR amplification of a G + C-rich DNA using genetically engineered DNA polymerases

K. Varadaraj; Dorothy M. Skinner

We describe conditions that improve the specificity of amplification of a G + C-rich (57% G + C) DNA by PCR. Under standard conditions a 368-bp segment of the approx. 2.1-kb repeat unit of a satellite DNA that accounts for approx. 3% of the genome of the Bermuda land crab, Gecarcinus lateralis, was not amplified specifically. To establish optimal conditions for amplification of the segment of the G + C-rich satellite, we used two genetically engineered enzymes, AmpliTaq DNA polymerase and AmpliTaq DNA polymerase, Stoffel fragment (SF), and a number of denaturants or co-solvents. In the absence of denaturants or co-solvents, amplified products of both enzymes contained non-specific bands upon gel electrophoresis. Addition of certain denaturants or co-solvents to PCR mixtures resulted in the production of the single specific band of the expected size. Reagents that improved specificity of the amplified product were formamide, glycerol, DMSO, Tween-20 and NP-40; on the other hand, urea, ethanol and 1-methyl-2-pyrrolidone (NMP) inhibited amplification. Of the two enzymes, SF was more specific and efficient. The products of AmpliTaq DNA polymerase included one or more extra bands, even in the presence of denaturants or co-solvents, except for glycerol or DMSO.


The Journal of Membrane Biology | 1999

The role of MIP in lens fiber cell membrane transport

K. Varadaraj; C. Kushmerick; G.J. Baldo; Steven Bassnett; Alan Shiels; Richard T. Mathias

Abstract. MIP has been hypothesized to be a gap junction protein, a membrane ion channel, a membrane water channel and a facilitator of glycerol transport and metabolism. These possible roles have been indirectly suggested by the localization of MIP in lens gap junctional plaques and the properties of MIP when reconstituted into artificial membranes or exogenously expressed in oocytes. We have examined lens fiber cells to see if these functions are present and whether they are affected by a mutation of MIP found in CatFr mouse lens. Of these five hypothesized functions, only one, the role of water channel, appears to be true of fiber cells in situ. Based on the rate of volume change of vesicles placed in a hypertonic solution, fiber cell membrane lipids have a low water permeability (pH2O) on the order of 1 μm/sec whereas normal fiber cell membrane pH2O was 17 μm/sec frog, 32 μm/sec rabbit and 43 μm/sec mouse. CatFr mouse lens fiber cell pH2O was reduced by 13 μm/sec for heterozygous and 30 μm/sec for homozygous mutants when compared to wild type. Lastly, when expressed in oocytes, the pH2O conferred by MIP is not sensitive to Hg2+ whereas that of CHIP28 (AQP1) is blocked by Hg2+. The fiber cell membrane pH2O was also not sensitive to Hg2+ whereas lens epithelial cell pH2O (136 μm/sec in rabbit) was blocked by Hg2+. With regard to the other hypothesized roles, fiber cell membrane or lipid vesicles had a glycerol permeability on the order of 1 nm/sec, an order of magnitude less than that conferred by MIP when expressed in oocytes. Impedance studies were employed to determine gap junctional coupling and fiber cell membrane conductance in wild-type and heterozygous CatFr mouse lenses. There was no detectable difference in either coupling or conductance between the wild-type and the mutant lenses.


Biochemical and Biophysical Research Communications | 2009

Intact AQP0 performs cell-to-cell adhesion

S. Sindhu Kumari; K. Varadaraj

Aquaporins (AQPs) constitute a major conduit for movement of water across plasma membranes. AQP0 is expressed in the fiber cells and is critical for lens transparency and homeostasis as mutations and knockout have resulted in dominant lens cataract. Several functions have been attributed for AQP0. In vitro and ex vivo experiments from several laboratories have confirmed the water permeability function of AQP0. However, this function seems paradoxical when the lens switches protein expression from AQP1 in the equatorial epithelial cells to 40 times less efficient AQP0 in the differentiating fiber cells. A possible explanation is AQP0 may perform unique function/s besides being a water pore. Indirect evidences including those from structural studies indicate a cell-to-cell adhesion role for AQP0. However, there is a lack of experimental evidence directly demonstrating the cell-to-cell adhesion capability of AQP0. We studied the adhesion property of human intact AQP0 by expressing it in adhesion-deficient mouse fibroblast L-cells using a newly devised method as well as a traditional assay. Our results reveal that AQP0 indeed can perform cell-to-cell adhesion. AQP1, two alternate splice variants of AQP4 (AQP4-M1and AQP4-M23) and E-cadherin were also tested to validate the results. Cell-to-cell adhesion and cell aggregation properties of AQP0 expressing L-cells were less than those of the positive control L-cells expressing mouse E-cadherin and greater than those of AQP4-M23. AQP1 or AQP4-M1 expressing cells did not show cell-to-cell adhesion or cell aggregation. To our knowledge, this is the first report validating the possible structural role of intact AQP0 as a cell-to-cell adhesion protein, using an in vitro expression system.


Aquaculture | 1990

Production of all-female sterile-triploid Oreochromis mossambicus.

K. Varadaraj; T. J. Pandian

All-female triploids were produced by heat shocking 2.5-min-old eggs which had been fertilized with sperm from a masculinized female (XX-♂). Induction of triploidy was confirmed using the estimates of red blood cell (RBC) nuclear volume. Ovaries of the control diploids were packed with oocytes, while those of triploids contained only one or two poorly developed oocytes, thus indicating the sterility of female triploids. The major disadvantage of normal triploidization is the inadvertent introduction of a few diploids (♀ + ♂), which can undo all the labour involved in the triploidization; but all-female triploidization avoids the problems associated with normal triploidization. This technique may have considerable potential for tilapia aquaculture.


Experimental Eye Research | 2008

Functional characterization of a human aquaporin 0 mutation that leads to a congenital dominant lens cataract.

K. Varadaraj; S. Sindhu Kumari; Rajkumar V. Patil; M. B. Wax; Richard T. Mathias

The aquaporin (AQP) transmembrane proteins facilitate the movement of water across the plasma membrane. In the lens, AQP0 is expressed in fiber cells and AQP1 in the epithelium. Recently, two individuals were identified with congenital polymorphic autosomal dominant cataract, due to a single nucleotide base deletion mutation in the lens AQP0. The deletion modified the reading frame resulting in the addition of a premature stop codon. In the present study, we examined the water permeability properties, trafficking and dominant negative effects as well as cytotoxicity due to the mutant AQP0 (Delta213-AQP0) protein. The membrane water permeability (P(w)) of Delta213-AQP0 expressing oocytes (14+/-1 microm/s) was significantly lower than those expressing WT-AQP0 (25+/-3 microm/s). P(w) of water injected control oocytes was 13+/-2 microm/s. Co-expression of WT-AQP0 with Delta213-AQP0 significantly lowered the P(w) (18+/-3 microm/s) compared to WT-AQP0. With or without the EGFP tag, WT-AQP0 protein localized in the plasma membranes of oocytes and cultured cells whereas Delta213-AQP0 was retained in the ER. Forster Resonance Energy Transfer (FRET) showed that WT-AQP0 partly localized with the co-expressed Delta213-AQP0. Co-localization studies suggest that the mutant AQP0 gained its dominant function by trapping the WT-AQP0 in the ER through hetero-oligomerization. Incubating the cells with chemical chaperones, namely, TMAO and DMSO, did not correct the folding/trafficking defects. Cell death in the Delta213-AQP0 expressing cells was due to necrosis caused by the accumulation of Delta213-AQP0 protein in the ER in cytotoxic proportions. The data show that replacement of the distal end of the 6th TM domain and the C-terminal domain of AQP0 due to the deletion mutation resulted in the impairment of cell membrane P(w), localization of the mutant protein in the ER without trafficking to the plasma membrane, and cytotoxicity due to the accumulation of the mutant protein. Cataracts in patients with this mutation might have resulted from the above mentioned consequences.


Cellular Signalling | 2013

Cannabinoid receptor 1 suppresses transient receptor potential vanilloid 1-induced inflammatory responses to corneal injury.

Y. Yang; H. Yang; Z. Wang; K. Varadaraj; S. Sindhu Kumari; Stefan Mergler; Yuka Okada; Shizuya Saika; Phillip J. Kingsley; Lawrence J. Marnett; Peter S. Reinach

Cannabinoid receptor type 1 (CB1)-induced suppression of transient receptor potential vanilloid type 1 (TRPV1) activation provides a therapeutic option to reduce inflammation and pain in different animal disease models through mechanisms involving dampening of TRPV1 activation and signaling events. As we found in both mouse corneal epithelium and human corneal epithelial cells (HCEC) that there is CB1 and TRPV1 expression colocalization based on overlap of coimmunostaining, we determined in mouse corneal wound healing models and in human corneal epithelial cells (HCEC) if they interact with one another to reduce TRPV1-induced inflammatory and scarring responses. Corneal epithelial debridement elicited in vivo a more rapid wound healing response in wildtype (WT) than in CB1(-/-) mice suggesting functional interaction between CB1 and TRPV1. CB1 activation by injury is tenable based on the identification in mouse corneas of 2-arachidonylglycerol (2-AG) with tandem LC-MS/MS, a selective endocannabinoid CB1 ligand. Suppression of corneal TRPV1 activation by CB1 is indicated since following alkali burning, CB1 activation with WIN55,212-2 (WIN) reduced immune cell stromal infiltration and scarring. Western blot analysis of coimmunoprecipitates identified protein-protein interaction between CB1 and TRPV1. Other immunocomplexes were also identified containing transforming growth factor kinase 1 (TAK1), TRPV1 and CB1. CB1 siRNA gene silencing prevented suppression by WIN of TRPV1-induced TAK1-JNK1 signaling. WIN reduced TRPV1-induced Ca(2+) transients in fura2-loaded HCEC whereas pertussis toxin (PTX) preincubation obviated suppression by WIN of such rises caused by capsaicin (CAP). Whole cell patch clamp analysis of HCEC showed that WIN blocked subsequent CAP-induced increases in nonselective outward currents. Taken together, CB1 activation by injury-induced release of endocannabinoids such as 2-AG downregulates TRPV1 mediated inflammation and corneal opacification. Such suppression occurs through protein-protein interaction between TRPV1 and CB1 leading to declines in TRPV1 phosphorylation status. CB1 activation of the GTP binding protein, G(i/o) contributes to CB1 mediated TRPV1 dephosphorylation leading to TRPV1 desensitization, declines in TRPV1-induced increases in currents and pro-inflammatory signaling events.


Developmental Dynamics | 2007

Functional expression of aquaporins in embryonic, postnatal, and adult mouse lenses

K. Varadaraj; S. Sindhu Kumari; Richard T. Mathias

Aquaporin 0 (AQP0) and AQP1 are expressed in the lens, each in a different cell type, and their functional roles are not thoroughly understood. Our previous study showed that these two AQPs function as water transporters. In order to further understand the functional significance of these two different aquaporins in the lens, we investigated their initiation and continued expression. AQP0 transcript and protein were first detected at embryonic stage (E) 11.25 in the differentiating primary fiber cells of the developing lens; its synthesis continued through the adult stage in the secondary fiber cells. Low levels of AQP1 expression were first seen in lens anterior epithelial cells at E17.5; following postnatal day (P) 6.5, the expression gradually progressed towards the equatorial epithelial cells. In the postnatal lens, the increase in membrane water permeability of epithelial cells and lens transparency coincides with the increase in AQP1 expression. AQP1 expression reaches its peak at P30 and continues through the adult stage both in the anterior and equatorial epithelial cells. The enhancement in AQP1 expression concomitant with the increase in the size of the lens suggests the progression in the establishment of the lens microcirculatory system. In vitro and in vivo studies show that both aquaporins share at least one important function, which is water transport in the lens microcirculatory system. However, the temporal expression of these two AQPs suggests an apparently unique role/s in lens development and transparency. To our knowledge, this is the first report on the expression patterns of AQP0 and AQP1 during lens development and differentiation and their relation to lens transparency. Developmental Dynamics 236:1319–1328, 2007.


The Progressive Fish-culturist | 1994

Comparison of Conditions for Hormonal Sex Reversal of Mozambique Tilapias

K. Varadaraj; S. Sindhu Kumari; T. J. Pandian

Abstract Roles of selected factors on sex reversal of fry of Mozambique tilapia (Tilapia mossambica) administered 17∝-methyltestosterone (MT) through the diet were investigated. The tested factors were temperature (22–38°C), photoperiod (darkness: light, 0 h:24 h to 24 h:0 h), stocking density (100–2,000 fry/m2), feeding rate (10 or 25% body weight!d), supplementation of the medium with a growth promotor (thyroxine), and storage conditions of MT and MT-treated feed. Survival, growth, and sex-reversing potency of MT were significantly influenced directly or indirectly by temperature, feeding rate, photoperiod, and storage conditions of both MT and MT-treated feed. Stocking density and supplementation of thyroxine in the rearing medium influenced survival and growth. without modifying the sex-reversing potency of MT, when the treated fry were fed ad libitum. Photoperiod and low rearing temperature did not directly alter MT-induced sex reversal but did affect sex reversal indirectly by inhibiting MT-treated ...


Experimental Eye Research | 2010

Transgenic expression of AQP1 in the fiber cells of AQP0 knockout mouse: effects on lens transparency.

K. Varadaraj; S. Sindhu Kumari; Richard T. Mathias

Mutations and knockout of aquaporin 0 (AQP0) result in dominant lens cataract. To date, several functions have been proposed for AQP0; however, two functions, water permeability and cell-to-cell adhesion have been supported by several investigators and only water channel function has been readily authenticated by in vitro and ex vivo studies. Lens shifts protein expression from the more efficient AQP1 in the equatorial epithelial cells to the less efficient water channel, AQP0, in the differentiating secondary fiber cells; perhaps, AQP0 performs a distinctive function. If AQP0 has only water permeability function, can the more efficient water channel AQP1 transgenically expressed in the fiber cells compensate and restore lens transparency in the AQP0 knockout (AQP0(-/-)) mouse? To investigate, we generated a transgenic wild-type mouse line expressing AQP1 in the fiber cells using alphaA-crystallin promoter. These transgenic mice (TgAQP1(+/+)) showed increase in fiber cell membrane water permeability without any morphological, anatomical or physiological defects compared to the wild type indicating that the main purpose of the shift in expression from AQP1 to AQP0 may not be to lessen the membrane water permeability. Further, we transgenically expressed AQP1 in the lens fiber cells of AQP0 knockout mouse (TgAQP1(+/+)/AQP0(-/-)) to determine whether AQP1 could restore AQP0 water channel function and regain lens transparency. Fiber cells of these mice showed 2.6 times more water permeability than the wild type. Transgene AQP1 reduced the severity of lens cataract and prevented dramatic acceleration of cataractogenesis. However, lens fiber cells showed deformities and lack of compact cellular architecture. Loss of lens transparency due to the absence of AQP0 was not completely restored indicating an additional function for AQP0. In vitro studies showed that AQP0 is capable of cell-to-cell adhesion while AQP1 is not. To our knowledge, this is the first report which uses an animal model to demonstrate that AQP0 may have an additional function, possibly cell-to-cell adhesion.


Biophysical Journal | 1999

A THREE-STATE MODEL FOR CONNEXIN37 GATING KINETICS

S.V. Ramanan; Peter R. Brink; K. Varadaraj; Elizabeth Peterson; K. Schirrmacher; K. Banach

The gating behavior of human connexin 37 (hCx37) is unaffected by the nature of the bathing monovalent (for Na, K, Rb). It is modified by [Mg] in the millimolar range. For fitting the kinetics, we propose a simple extension to three states of the canonical 2-state model of the hemichannel. The extra closed state allows for some immobilization of a hemichannel at high transjunctional voltages. The model is reasonably efficient at fitting data at various voltage protocols. Interpreting the fits of the data at different [Mg] is consistent with a binding site for Mg.

Collaboration


Dive into the K. Varadaraj's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Shiels

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Junyuan Gao

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar

Xiurong Sun

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar

T. J. Pandian

Madurai Kamaraj University

View shared research outputs
Top Co-Authors

Avatar

Dorothy M. Skinner

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anil G. Menon

University of Cincinnati Academic Health Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge