K.W. van Dijk
Leiden University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by K.W. van Dijk.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2000
M.P.J. de Winther; K.W. van Dijk; L.M. Havekes; Marten H. Hofker
In atherogenesis, elevated plasma levels of low density lipoprotein (LDL) lead to the chronic presence of LDL in the arterial wall. There, LDL is modified (eg, oxidized), and these modified lipoproteins activate endothelial cells, which attract circulating monocytes. These monocytes enter the vessel wall, differentiate into macrophages, and subject the modified lipoproteins to endocytosis through scavenger receptor pathways. This unrestricted uptake, which is not limited by intracellular cholesterol levels, eventually leads to the formation of lipid-filled foam cells, the initial step in atherosclerosis. Macrophage scavenger receptor class A (SRA) is thought to be one of the main receptors involved in foam cell formation, mediating the influx of lipids into the macrophages. In addition to this role in modified lipoprotein uptake by macrophages, the SRA has been shown to be important in the inflammatory response in host defense, cellular activation, adhesion, and cell-cell interaction. Given the importance of these processes in atherogenesis, these latter functions may prove to make the SRA a multifunctional player in the atherosclerotic process.
Journal of Biological Chemistry | 1999
Ar Mensenkamp; M.C. Jong; van Harry Goor; van Marja Luyn; Vincent W. Bloks; R Havinga; Peter J. Voshol; M.H. Hofker; K.W. van Dijk; Louis M. Havekes; Folkert Kuipers
ApoE-deficient mice on low fat diet show hepatic triglyceride accumulation and a reduced very low density lipoprotein (VLDL) triglyceride production rate. To establish the role of apoE in the regulation of hepatic VLDL production, the human APOE3 gene was introduced into apoE-deficient mice by cross-breeding with APOE3 transgenics (APOE3/apoe−/− mice) or by adenoviral transduction. APOE3 was expressed in the liver and, to a lesser extent, in brain, spleen, and lung of transgenic APOE3/apoe−/− mice similar to endogenous apoe. Plasma cholesterol levels in APOE/apoe−/− mice (3.4 ± 0.5 mm) were reduced when compared with apoe−/− mice (12.6 ± 1.4 mm) but still elevated when compared with wild type control values (1.9 ± 0.1 mm). Hepatic triglyceride accumulation in apoE-deficient mice was completely reversed by introduction of the APOE3 transgene. The in vivo hepatic VLDL-triglyceride production rate was reduced to 36% of control values in apoE-deficient mice but normalized in APOE3/apoe−/− mice. Hepatic secretion of apoB was not affected in either of the strains. Secretion of 3H-labeled triglycerides synthesized from [3H]glycerol by cultured hepatocytes from apoE-deficient mice was four times lower than by APOE3/apoe−/− or control hepatocytes. The average size of secreted VLDL particles produced by cultured apoE-deficient hepatocytes was significantly reduced when compared with those of APOE3/apoe−/− and wild type mice. Hepatic expression of human APOE3 cDNA via adenovirus-mediated gene transfer in apoE-deficient mice resulted in a reduction of plasma cholesterol depending on plasma apoE3 levels. The in vivoVLDL-triglyceride production rate in these mice was increased up to 500% compared with LacZ-injected controls and correlated with the amount of apoE3 per particle. These findings indicate a regulatory role of apoE in hepatic VLDL-triglyceride secretion, independent from its role in lipoprotein clearance.
Journal of Clinical Investigation | 1996
M.C. Jong; V.E.H. Dahlmans; P.J.J. van Gorp; K.W. van Dijk; Marco L. Breuer; M.H. Hofker; L.M. Havekes
To study the role of apoC1 in lipoprotein metabolism, we have generated transgenic mice expressing the human APOC1 gene. On a sucrose-rich diet, male transgenic mice with high APOC1 expression in the liver showed elevated levels of serum cholesterol and triglyceride compared with control mice (5.7+/-0.7 and 3.3+/-2.1 vs. 2.7+/-0.1 and 0.4+/-0.1 mmol/liter, respectively). These elevated levels were mainly confined to the VLDL fraction. Female APOC1 transgenic mice showed less pronounced elevated serum lipid levels. In vivo VLDL turnover studies revealed that, in hyperlipidemic APOC1 transgenic mice, VLDL particles are cleared less efficiently from the circulation as compared with control mice. No differences were observed in the hepatic production and extrahepatic lipolysis of VLDL-triglyceride. Also, VLDL isolated from control and APOC1 transgenic mice were found to be equally good substrates for bovine lipoprotein lipase in vitro. These data indicate that the hyperlipidemia in APOC1 transgenic mice results primarily from impaired hepatic VLDL particle clearance, rather than a defect in the hydrolysis of VLDL-triglyceride. To investigate which hepatic receptor is involved in the apoC1-mediated inhibition of VLDL clearance, APOC1 transgenic mice were bred with an LDL receptor-deficient (LDLR(-/-)) background. In addition, control, LDLR(-/-), and LDLR(-/-)/APOC1 mice were transfected with adenovirus carrying the gene for the receptor-associated protein (Ad-RAP). Both serum cholesterol and triglyceride levels were strongly elevated in LDLR(-/-)/APOC1 mice compared with LDLR(-/-) mice (52+/-19 and 36+/-19 vs. 8.4+/-0.9 and 0.5+/-0.2 mmol/liter, respectively), indicating that apoC1 inhibits the alternative VLDL clearance pathway via the remnant receptor. Transfection of LDLR(-/-) mice with Ad-RAP strongly increased serum cholesterol and triglyceride levels, but to a lesser extent than those found in LDLR(-/-)/APOC1 mice (39+/-8 and 17+/-8 vs. 52+/-19 and 36+/-19 mmol/liter, respectively). However, in LDLR(-/-)/APOC1 mice the transfection with Ad-RAP did not further increase serum cholesterol and triglyceride levels (52+/-19 and 36+/-19 vs. 60+/-10 and 38+/-7 mmol/liter, respectively). From these studies we conclude that, in the absence of the LDLR, apoC1 inhibits the hepatic uptake of VLDL via a RAP-sensitive pathway.
Journal of Biological Chemistry | 2001
Kyriakos E. Kypreos; K.W. van Dijk; A. van der Zee; Louis M. Havekes; Vassilis I. Zannis
Apolipoprotein (apo) E has been implicated in cholesterol and triglyceride homeostasis in humans. At physiological concentration apoE promotes efficient clearance of apoE-containing lipoprotein remnants. However, high apoE plasma levels correlate with high plasma triglyceride levels. We have used adenovirus-mediated gene transfer in apoE-deficient mice (E− /−) to define the domains of apoE required for cholesterol and triglyceride homeostasis in vivo. A dose of 2 × 109 plaque-forming units of apoE4-expressing adenovirus reduced slightly the cholesterol levels of E− /− mice and resulted in severe hypertriglyceridemia, due to accumulation of cholesterol and triglyceride-rich very low density lipoprotein particles in plasma. In contrast, the truncated form apoE4–202 resulted in a 90% reduction in the plasma cholesterol levels but did not alter plasma triglyceride levels in the E− /− mice. ApoE secretion by cell cultures, as well as the steady-state hepatic mRNA levels in individual mice expressing apoE4 or apoE4–202, were similar. In contrast, very low density lipoprotein-triglyceride secretion in mice expressing apoE4, but not apoE4–202, was increased 10-fold, as compared with mice infected with a control adenovirus. The findings suggest that the amino-terminal 1–202 region of apoE4 contains the domains required for the in vivo clearance of lipoprotein remnants. Furthermore, the carboxyl-terminal 203–299 residues of apoE promote hepatic very low density lipoprotein-triglyceride secretion and contribute to apoE-induced hypertriglyceridemia.
Journal of Biological Chemistry | 1996
B.J.M. van Vlijmen; K.W. van Dijk; H.B. van 't Hof; P.J.J. van Gorp; A. van der Zee; H. van der Boom; Michael Breuer; M.H. Hofker; L.M. Havekesf
Apolipoprotein E*2(Arg-158 → Cys) (APOE*2) transgenic mice were generated and compared to the previously generated apolipoprotein E*3-Leiden (APOE*3-Leiden) transgenic mice to study the variable expression of hyperlipoproteinemia associated with these two APOE variants. In the presence of the endogenous mouse Apoe gene, the expression of the APOE*3-Leiden gene resulted in slightly elevated levels of serum cholesterol as compared with control mice (2.7 ± 0.5 versus 2.1 ± 0.2 mmol/liter, respectively), whereas the expression of the APOE*2(Arg-158 → Cys) gene did not affect serum cholesterol levels, even after high/fat cholesterol feeding. The extreme cholesterol level usually found in apoE-deficient mice (Apoe−/− mice; 23.6 ± 5.0 mmol/liter) could be rescued by introducing the APOE*3-Leiden gene (APOE*3-Leiden·;Apoe−/−; 3.6 ± 1.5 mmol/liter), whereas the expression of the APOE*2(Arg-158 → Cys) gene in Apoe−/− mice minimally reduced serum cholesterol levels (APOE*2·;Apoe−/−; 16.6 ± 2.9 mmol/liter). In vivo very low density lipoprotein (VLDL) turnover studies revealed that APOE*2·;Apoe−/− VLDL and APOE*3-Leiden·;Apoe−/− VLDL display strongly reduced fractional catabolic rates as compared with control mouse VLDL (4.0 and 6.1 versus 22.1 pools/h). In vitro low density lipoprotein (LDL) receptor binding studies using HepG2 and J774 cells showed that APOE*2·; Apoe−/− VLDL is completely defective in binding to the LDL receptor, whereas APOE*3-Leiden·;Apoe−/− VLDL still displayed a considerable binding activity to the LDL receptor. After transfection of APOE*2·;Apoe−/− and APOE*3-Leiden·;Apoe−/− mice with adenovirus carrying the gene for the receptor-associated protein (AdCMV-RAP), serum lipid levels strongly increased (15.3 to 42.8 and 1.4 to 15.3 mmol/liter for cholesterol and 5.0 to 35.7 and 0.3 to 20.7 mmol/liter for triglycerides, respectively). This indicates that RAP-sensitive receptors, possibly the LDL receptor-related protein (LRP), mediate the plasma clearance of both APOE*2·;Apoe−/− and APOE*3-Leiden·; Apoe−/− VLDL. We conclude that in vivo the APOE*2 variant is completely defective in LDL receptor binding but not in binding to LRP, whereas for the APOE*3-Leiden mutant both LRP and LDL receptor binding activity are only mildly affected. As a consequence of this difference, APOE*2·;Apoe−/− develop more severe hypercholesterolemia than APOE*3-Leiden·;Apoe−/− mice.
Diabetes Care | 2014
Lips; J.B. van Klinken; Vanessa van Harmelen; Harish Dharuri; Peter A. C. 't Hoen; Jeroen F. J. Laros; G.J.B. van Ommen; Ignace M C Janssen; B. van Ramshorst; B. A. van Wagensveld; Dingeman J. Swank; F. M. H. van Dielen; Adrie Dane; Amy C. Harms; R. Vreeken; Thomas Hankemeier; Johannes W. A. Smit; Hanno Pijl; K.W. van Dijk
OBJECTIVE Obesity and type 2 diabetes mellitus (T2DM) have been associated with increased levels of circulating branched-chain amino acids (BCAAs) that may be involved in the pathogenesis of insulin resistance. However, weight loss has not been consistently associated with the reduction of BCAA levels. RESEARCH DESIGN AND METHODS We included 30 obese normal glucose-tolerant (NGT) subjects, 32 obese subjects with T2DM, and 12 lean female subjects. Obese subjects underwent either a restrictive procedure (gastric banding [GB], a very low-calorie diet [VLCD]), or a restrictive/bypass procedure (Roux-en-Y gastric bypass [RYGB] surgery). Fasting blood samples were taken for the determination of amine group containing metabolites 4 weeks before, as well as 3 weeks and 3 months after the intervention. RESULTS BCAA levels were higher in T2DM subjects, but not in NGT subjects, compared with lean subjects. Principal component (PC) analysis revealed a concise PC consisting of all BCAAs, which showed a correlation with measures of insulin sensitivity and glucose tolerance. Only after the RYGB procedure, and at both 3 weeks and 3 months, were circulating BCAA levels reduced. CONCLUSIONS Our data confirm an association between deregulation of BCAA metabolism in plasma and insulin resistance and glucose intolerance. Three weeks after undergoing RYGB surgery, a significant decrease in BCAAs in both NGT as well as T2DM subjects was observed. After 3 months, despite inducing significant weight loss, neither GB nor VLCD induced a reduction in BCAA levels. Our results indicate that the bypass procedure of RYGB surgery, independent of weight loss or the presence of T2DM, reduces BCAA levels in obese subjects.
Current Opinion in Clinical Nutrition and Metabolic Care | 2011
S.A.A. van den Berg; W.D. van Marken Lichtenbelt; K.W. van Dijk; P. Schrauwen
Purpose of reviewThe prevalence of obesity is still increasing, despite obesity treatment strategies that aim at reducing energy intake. In addition to this, exercise programmes designed to increase energy expenditure have only a low efficiency and have generated mixed results. Therefore, strategies based on increasing energy expenditure via nonexercise means are currently under investigation. One novel strategy is the modulation of adaptive thermogenesis. Recent findingsAmong others, adaptive thermogenesis can be modulated by changing dietary composition, treatment with hormone mimetics as well as by cold exposure. In humans, a large part of the adaptive thermogenic response is, in addition to a putative role of brown adipose tissue, determined by the skeletal muscle mass via the process of mitochondrial uncoupling. Here, we describe the molecular processes involved in mitochondrial uncoupling, state-of-the-art techniques to measure mitochondrial uncoupling in vitro and in vivo, as well as the current strategies to mitochondrial uncoupling. SummaryData generated in rodents and humans implicate that increasing adaptive thermogenesis by increasing skeletal muscle mitochondrial uncoupling indeed elevates total energy expenditure and thus may provide a promising target for the treatment of obesity.
Journal of Nutrigenetics and Nutrigenomics | 2009
J. de Wilde; Egbert F. Smit; Ronny Mohren; Mark V. Boekschoten; P. G. De Groot; S.A.A. van den Berg; Silvia Bijland; Peter J. Voshol; K.W. van Dijk; N. W. J. de Wit; Annelies Bunschoten; Gert Schaart; Martijn F.M. Hulshof; Edwin C. M. Mariman
Background: Skeletal muscle is responsible for most of the insulin-stimulated glucose uptake and metabolism. Therefore, it plays an important role in the development of insulin resistance, one of the characteristics of the metabolic syndrome (MS). As the prevalence of the MS is increasing, there is an urgent need for more effective intervention strategies. Methods: C57BL/6J mice were fed an 8-week low-fat diet (10 kcal%; LFD) or high-fat diet (45 kcal%; HFD). Microarray analysis was performed by using two comparisons: (1) 8-week HFD transcriptome versus 8-week LFD transcriptome and (2) transcriptome of mice sacrificed at the start of the intervention versus 8-week LFD transcriptome and 8-week HFD transcriptome, respectively. Results: Although an 8-week HFD induced obesity and impaired insulin sensitivity, HFD-responsive changes in the muscle transcriptome were relatively small (<1.3-fold). In fact, 8-weeks of aging induced more pronounced changes than an HFD. One comparison revealed the transcriptional downregulation of the mito- gen-activated protein kinase cascade, whereas both comparisons showed the upregulation of fatty acid oxidation, demonstrating that the two comparison strategies are confirmative as well as complementary. Conclusion: We suggest using complementary analysis strategies in the genome-wide search for gene expression changes induced by mild interventions, such as an HFD.
Arteriosclerosis, Thrombosis, and Vascular Biology | 1998
K.W. van Dijk; B.J.M. van Vlijmen; A. van der Zee; B. van 't Hof; H. van der Boom; Kunihisa Kobayashi; Lawrence Chan; Louis M. Havekes; M.H. Hofker
We have investigated the interaction of apolipoprotein E2(Arg158-Cys) (apoE2) and apolipoprotein E3-Leiden (apoE3-Leiden) with the very low density lipoprotein (VLDL) receptor in vivo and in vitro to define the possible role of this receptor in lipoprotein metabolism and atherosclerosis. The in vivo binding specificity of the VLDL receptor for apoE2 and apoE3-Leiden was investigated by adenovirus-mediated gene transfer of the VLDL receptor in apoE2 and apoE3-Leiden transgenic mice lacking endogenous mouse apoE (Apoe-/-). Ectopic overexpression of the VLDL receptor gene in the liver resulted in a >50% decrease of plasma cholesterol levels in both apoE2 and apoE3-Leiden transgenic mice compared with liver expression of the beta-galactosidase gene. This reduction in plasma cholesterol was mainly due to a reduction in the VLDL level. Overexpression of the VLDL receptor did not affect the hepatic VLDL triglyceride production, indicating that the hypocholesterolemic effect is due to an increased level of plasma clearance mediated by the VLDL receptor. In vitro binding analysis showed that both apoE2 and apoE3-Leiden VLDL compete efficiently with rabbit beta-VLDL for binding to the VLDL receptor expressed on LDL receptor-deficient Chinese hamster ovary cells. We conclude from these data that both apoE2 and apoE3-Leiden function as proper ligands for the VLDL receptor in vitro and in vivo. This finding substantiates a possible role for the VLDL receptor in atherosclerosis in hyperlipidemic subjects homozygous for apoE2 or carrying apoE3-Leiden and indicates that the VLDL receptor expressed on the liver has therapeutic potential as an alternative route for clearance of binding-defective lipoproteins.
Journal of Lipid Research | 2013
J.A. van Diepen; Rinke Stienstra; Irene O.C.M. Vroegrijk; S.A.A. van den Berg; Daniela Salvatori; Guido Hooiveld; Sander Kersten; Cees J. Tack; Mihai G. Netea; Johannes W. A. Smit; Liesbeth Joosten; L.M. Havekes; K.W. van Dijk; P.C.N. Rensen
Caspase-1 is known to activate the proinflammatory cytokines IL-1β and IL-18. Additionally, it can cleave other substrates, including proteins involved in metabolism. Recently, we showed that caspase-1 deficiency in mice strongly reduces high-fat diet-induced weight gain, at least partly caused by an increased energy production. Increased feces secretion by caspase-1-deficient mice suggests that lipid malabsorption possibly further reduces adipose tissue mass. In this study we investigated whether caspase-1 plays a role in triglyceride-(TG)-rich lipoprotein metabolism using caspase-1-deficient and wild-type mice. Caspase-1 deficiency reduced the postprandial TG response to an oral lipid load, whereas TG-derived fatty acid (FA) uptake by peripheral tissues was not affected, demonstrated by unaltered kinetics of [3H]TG-labeled very low-density lipoprotein (VLDL)-like emulsion particles. An oral gavage of [3H]TG-containing olive oil revealed that caspase-1 deficiency reduced TG absorption and subsequent uptake of TG-derived FA in liver, muscle, and adipose tissue. Similarly, despite an elevated hepatic TG content, caspase-1 deficiency reduced hepatic VLDL-TG production. Intestinal and hepatic gene expression analysis revealed that caspase-1 deficiency did not affect FA oxidation or FA uptake but rather reduced intracellular FA transport, thereby limiting lipid availability for the assembly and secretion of TG-rich lipoproteins. The current study reveals a novel function for caspase-1, or caspase-1-cleaved substrates, in controlling intestinal TG absorption and hepatic TG secretion.