K. Xerxes Steirer
National Renewable Energy Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by K. Xerxes Steirer.
Nature Materials | 2016
Jing Gu; Yong Yan; James L. Young; K. Xerxes Steirer; Nathan R. Neale; John A. Turner
Producing hydrogen through solar water splitting requires the coverage of large land areas. Abundant metal-based molecular catalysts offer scalability, but only if they match noble metal activities. We report on a highly active p-GaInP2 photocathode protected through a 35-nm TiO2 layer functionalized by a cobaloxime molecular catalyst (GaInP2-TiO2-cobaloxime). This photoelectrode mediates H2 production with a current density of ∼9 mA cm(-2) at a potential of 0 V versus RHE under 1-sun illumination at pH 13. The calculated turnover number for the catalyst during a 20-h period is 139,000, with an average turnover frequency of 1.9 s(-1). Bare GaInP2 shows a rapid current decay, whereas the GaInP2-TiO2-cobaloxime electrode shows ≤5% loss over 20 min, comparable to a GaInP2-TiO2-Pt catalyst particle-modified interface. The activity and corrosion resistance of the GaInP2-TiO2-cobaloxime photocathode in basic solution is made possible by an atomic layer-deposited TiO2 and an attached cobaloxime catalyst.
Green Chemistry | 2016
Derek R. Vardon; Nicholas A. Rorrer; Davinia Salvachúa; Amy E. Settle; Christopher W. Johnson; Martin J. Menart; Nicholas S. Cleveland; Peter N. Ciesielski; K. Xerxes Steirer; John R. Dorgan; Gregg T. Beckham
cis,cis-Muconic acid is a polyunsaturated dicarboxylic acid that can be produced renewably via the biological conversion of sugars and lignin-derived aromatic compounds. Subsequently, muconic acid can be catalytically converted to adipic acid – the most commercially significant dicarboxylic acid manufactured from petroleum. Nylon-6,6 is the major industrial application for adipic acid, consuming 85% of market demand; however, high purity adipic acid (99.8%) is required for polymer synthesis. As such, process technologies are needed to effectively separate and catalytically transform biologically derived muconic acid to adipic acid in high purity over stable catalytic materials. To that end, this study: (1) demonstrates bioreactor production of muconate at 34.5 g L−1 in an engineered strain of Pseudomonas putida KT2440, (2) examines the staged recovery of muconic acid from culture media, (3) screens platinum group metals (e.g., Pd, Pt, Rh, Ru) for activity and leaching stability on activated carbon (AC) and silica supports, (4) evaluates the time-on-stream performance of Rh/AC in a trickle bed reactor, and (5) demonstrates the polymerization of bio-adipic acid to nylon-6,6. Separation experiments confirmed AC effectively removed broth color compounds, but subsequent pH/temperature shift crystallization resulted in significant levels of Na, P, K, S and N in the crystallized product. Ethanol dissolution of muconic acid precipitated bulk salts, achieving a purity of 99.8%. Batch catalysis screening reactions determined that Rh and Pd were both highly active compared to Pt and Ru, but Pd leached significantly (1–9%) from both AC and silica supports. Testing of Rh/AC in a continuous trickle bed reactor for 100 h confirmed stable performance after 24 h, although organic adsorption resulted in reduced steady-state activity. Lastly, polymerization of bio-adipic acid with hexamethyldiamine produced nylon-6,6 with comparable properties to its petrochemical counterpart, thereby demonstrating a path towards bio-based nylon production via muconic acid.
Nature Energy | 2017
Jing Gu; Jeffery A. Aguiar; Suzanne Ferrere; K. Xerxes Steirer; Yong Yan; Chuanxiao Xiao; James L. Young; Mowafak Al-Jassim; Nathan R. Neale; John A. Turner
Solar water splitting is often performed in highly corrosive conditions, presenting materials stability challenges. Gu et al. show that an efficient and stable hydrogen-producing photocathode can be realized through the application of a graded catalytic–protective layer on top of the photoabsorber.
ACS Applied Materials & Interfaces | 2014
Graham E. Morse; Jeremy Gantz; K. Xerxes Steirer; Neal R. Armstrong; Timothy P. Bender
We have demonstrated that pentafluoro phenoxy boron subphthalocyanine (F5BsubPc) can function as either an electron donor or an electron acceptor layer in a planar heterojunction organic photovolatic (PHJ OPV) cell. F5BsubPc was incorporated into devices with the configurations ITO/MoO3/F5BsubPc/C60/BCP/Al (F5BsubPc used as an electron-donor/hole-transport layer) and ITO/MoO3/Cl-BsubPc/F5BsubPc/BCP/Al (F5BsubPc used as an electron-acceptor/electron-transport layer). Each unoptimized device displayed open-circuit photopotentials (Voc) close to or in excess of 1 V and respectrable power conversion efficiencies. Ultraviolet photoelectron spectroscopy (UPS) was used to characterize the band-edge offset energies at the donor/acceptor junctions. HOMO and LUMO energy level offsets for the F5BsubPc/C60 heterojunction were determined to be ca. 0.6 eV and ca. 0.7 eV, respectively. Such offsets are clearly large enough to produce rectifying J/V responses, efficient exciton dissociation, and photocurrent production at the interface. For the Cl-BsubPc/F5BsubPc heterojunction, the estimated offset energies were found to be ca. 0.1 eV. However, reasonable photovoltaic activity was observed, with photocurrent production coming from both BsubPc species layers. Incident and absorbed photon power conversion efficiencies (IPCE and APCE) showed that photocurrent production qualitatively tracked the absorbance spectra of the donor/acceptor heterojunctions, with some additional photocurrent activity on the low energy side of the absorbance band. We suggest that photocurrent production at higher wavelengths may be a result of charge-transfer species at the donor/acceptor interface. Cascade photovoltaics were also fabricated to expand on the understanding of the role of F5BsubPc in such device architectures.
Journal of Materials Chemistry | 2013
Kai-Lin Ou; Delvin Tadytin; K. Xerxes Steirer; Diogenes Placencia; Michael Nguyen; Paul A. Lee; Neal R. Armstrong
We demonstrate the use of chemical vapor deposition (CVD) to create unique thin (12–36 nm) and conformal TiO2 interlayers on indium-tin oxide (ITO) electrodes, for use as electron collection contacts in inverted bulk heterojunction P3HT/PC61BM organic photovoltaics (OPVs). Optimized CVD formation of these oxide films is inherently scalable to large areas, and may be a viable non-contact alternative to electron-selective interlayer formation. Oxide-based electron-selective interlayers, such as TiO2, need to be thin, conformal and sufficiently electronically conducting films without sacrificing electron harvesting selectivity. Using volatile titanium-tetraisopropoxide (TTIP) precursors in a flowing N2 gas stream, the CVD process provides nanometer control of film thickness to produce 12–36 nm thickness device-quality films. The best performing CVD films, processed at substrate temperatures of ca. 210 °C, characterized using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were found to be amorphous but stoichiometric TiO2. Solution electrochemistries (voltammetry) of probe molecules were shown to be easily accessible indicators of film porosity and are predictive for electron harvesting selectivity (and hole-blocking) in an inverted configuration OPV platform. Small molecules whose redox potentials placed them energetically above the conduction band edge energy (ECB) were reduced/oxidized at nearly the same rates as for bare ITO. Probe molecules whose redox potentials place them energetically within the band gap region, below ECB, show almost complete blocking of their oxidation/reduction processes, for optimized conformal (and nonporous) TiO2 films. In addition, background oxidation current densities for solution probe molecules correlate inversely with the shunt resistance (RP) measured in OPVs. OPVs with the configuration: ITO/CVD-TiO2/P3HT:PC61BM/MoO3/Ag, using TiO2 films of 12, 24 and 36 nm, were evaluated for short-circuit photocurrent (JSC), open-circuit photopotential (VOC), and fill-factor (FF), versus bare ITO. OPVs using amorphous, conformal 24 nm TiO2 interlayers showed the highest fill factors, lowest RS, highest RP and power conversion efficiencies of ca. 3.7%.
ACS Applied Materials & Interfaces | 2015
Bradley A. MacLeod; K. Xerxes Steirer; James L. Young; Unsal Koldemir; Alan Sellinger; John A. Turner; Todd Deutsch; Dana C. Olson
The p-type semiconductor GaInP2 has a nearly ideal bandgap (∼1.83 eV) for hydrogen fuel generation by photoelectrochemical water splitting but is unable to drive this reaction because of misalignment of the semiconductor band edges with the water redox half reactions. Here, we show that attachment of an appropriate conjugated phosphonic acid to the GaInP2 electrode surface improves the band edge alignment, closer to the desired overlap with the water redox potentials. We demonstrate that this surface modification approach is able to adjust the energetic position of the band edges by as much as 0.8 eV, showing that it may be possible to engineer the energetics at the semiconductor/electrolyte interface to allow for unbiased water splitting with a single photoelectrode having a bandgap of less than 2 eV.
Journal of Materials Chemistry C | 2013
Benjamin H. Wunsch; Mariacristina Rumi; Naga Rajesh Tummala; Chad Risko; Dun-Yen Kang; K. Xerxes Steirer; Jeremy Gantz; Marcel M. Said; Neal R. Armstrong; Jean-Luc Brédas; David G. Bucknall; Seth R. Marder
Alkyl chains are often attached to the periphery of semiconductor molecules to impart solubility and they represent a pervasive structural element in solution processable, organic photovoltaics (OPV). It is important to understand the effects of such substitutions on the morphology and performance of organic solar cells. This investigation focuses on determining structure–property correlations in OPV devices constructed with small-molecule, solution processable electron donors based on benzothiadiazole–dithienopyrrole, mixed with the electron acceptor PCBM. Two donor molecules with the same opto-electronic molecular properties but differing alkyl substituents – without (BD) or with (BD6) hexyl side chains – are studied. The resulting device data for fabricated solar cells, across a range of processing conditions, is compared to thin-film morphology, spectroscopy, thermal analysis, and molecular dynamics simulations. Two device states of higher and lower performance, depending on the casting solvent, are obtained for the molecule without the side chains (BD); both states have amorphous mesoscale structure, but show subtle differences in the nanoscale phase separation. In contrast, for the molecule with side chains (BD6) devices have highly variable reproducibility and middling efficiency and photocurrent. The BD6 donor exhibits lower miscibility with PCBM, which correlates with the formation of a donor-enriched layer on the surface of the solar cell.
Nature Chemistry | 2018
Seoung-Bum Son; Tao Gao; Steve Harvey; K. Xerxes Steirer; Adam Stokes; Andrew G. Norman; Chunsheng Wang; Arthur v. Cresce; Kang Xu; Chunmei Ban
Magnesium-based batteries possess potential advantages over their lithium counterparts. However, reversible Mg chemistry requires a thermodynamically stable electrolyte at low potential, which is usually achieved with corrosive components and at the expense of stability against oxidation. In lithium-ion batteries the conflict between the cathodic and anodic stabilities of the electrolytes is resolved by forming an anode interphase that shields the electrolyte from being reduced. This strategy cannot be applied to Mg batteries because divalent Mg2+ cannot penetrate such interphases. Here, we engineer an artificial Mg2+-conductive interphase on the Mg anode surface, which successfully decouples the anodic and cathodic requirements for electrolytes and demonstrate highly reversible Mg chemistry in oxidation-resistant electrolytes. The artificial interphase enables the reversible cycling of a Mg/V2O5 full-cell in the water-containing, carbonate-based electrolyte. This approach provides a new avenue not only for Mg but also for other multivalent-cation batteries facing the same problems, taking a step towards their use in energy-storage applications.Mg-based batteries possess potential advantages over their lithium counterparts; however, the use of reversible oxidation-resistant, carbonate-based electrolytes has been hindered because of their undesirable electrochemical reduction reactions. Now, by engineering a Mg2+-conductive artificial interphase on a Mg electrode surface, which prevents such reactivity, highly reversible Mg deposition/stripping in carbonate-based electrolytes has been demonstrated.
photovoltaic specialists conference | 2010
Matthew T. Lloyd; Dana C. Olson; Joseph J. Berry; Nikos Kopidakis; Matthew O. Reese; K. Xerxes Steirer; David S. Ginley
Organic photovoltaics (OPVs) are realizing power conversion efficiencies that are of interest for commercial production. Consequently, understanding device lifetime and mitigating degradation pathways have become vital to the success of a new industry. Historically, the active organic components are considered vulnerable to photo-oxidation and represent the primary degradation channel. We present several (shelf life and light soaking) studies pointing to the relative stability of the active layers and instabilities in commonly used electrode materials. We show that engineering of the metal electrode and hole/electron injection layer can lead to environmentally stable devices without encapsulation.
Chemsuschem | 2017
Logan E. Garner; K. Xerxes Steirer; James L. Young; Nicholas C. Anderson; Elisa M. Miller; Jonathan S. Tinkham; Todd Deutsch; Alan Sellinger; John A. Turner; Nathan R. Neale
Efficient water splitting using light as the only energy input requires stable semiconductor electrodes with favorable energetics for the water-oxidation and proton-reduction reactions. Strategies to tune electrode potentials using molecular dipoles adsorbed to the semiconductor surface have been pursued for decades but are often based on weak interactions and quickly react to desorb the molecule under conditions relevant to sustained photoelectrolysis. Here, we show that covalent attachment of fluorinated, aromatic molecules to p-GaAs(1 0 0) surfaces can be employed to tune the photocurrent onset potentials of p-GaAs(1 0 0) photocathodes and reduce the external energy required for water splitting. Results indicate that initial photocurrent onset potentials can be shifted by nearly 150 mV in pH -0.5 electrolyte under 1 Sun (1000 W m-2 ) illumination resulting from the covalently bound surface dipole. Though X-ray photoelectron spectroscopy analysis reveals that the covalent molecular dipole attachment is not robust under extended 50 h photoelectrolysis, the modified surface delays arsenic oxide formation that results in a p-GaAs(1 0 0) photoelectrode operating at a sustained photocurrent density of -20.5 mA cm-2 within -0.5 V of the reversible hydrogen electrode.