Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where K.Y. Watanabe is active.

Publication


Featured researches published by K.Y. Watanabe.


Physics of Plasmas | 1999

Initial physics achievements of large helical device experiments

O. Motojima; H. Yamada; A. Komori; N. Ohyabu; K. Kawahata; O. Kaneko; S. Masuzaki; A. Ejiri; M. Emoto; H. Funaba; M. Goto; K. Ida; H. Idei; S. Inagaki; N. Inoue; S. Kado; S. Kubo; R. Kumazawa; T. Minami; J. Miyazawa; T. Morisaki; S. Morita; S. Murakami; S. Muto; T. Mutoh; Y. Nagayama; Y. Nakamura; H. Nakanishi; K. Narihara; K. Nishimura

The Large Helical Device (LHD) experiments [O. Motojima, et al., Proceedings, 16th Conference on Fusion Energy, Montreal, 1996 (International Atomic Energy Agency, Vienna, 1997), Vol. 3, p. 437] have started this year after a successful eight-year construction and test period of the fully superconducting facility. LHD investigates a variety of physics issues on large scale heliotron plasmas (R=3.9 m, a=0.6 m), which stimulates efforts to explore currentless and disruption-free steady plasmas under an optimized configuration. A magnetic field mapping has demonstrated the nested and healthy structure of magnetic surfaces, which indicates the successful completion of the physical design and the effectiveness of engineering quality control during the fabrication. Heating by 3 MW of neutral beam injection (NBI) has produced plasmas with a fusion triple product of 8×1018 keV m−3 s at a magnetic field of 1.5 T. An electron temperature of 1.5 keV and an ion temperature of 1.4 keV have been achieved. The maximum s...


Nuclear Fusion | 2005

Characterization of energy confinement in net-current free plasmas using the extended International Stellarator Database

H. Yamada; J. H. Harris; A. Dinklage; E. Ascasibar; F. Sano; S. Okamura; J. Talmadge; U. Stroth; A. Kus; S. Murakami; M. Yokoyama; C. D. Beidler; V. Tribaldos; K.Y. Watanabe; Yasuhiro Suzuki

International collaboration on development of a stellarator confinement database has progressed. More than 3000 data points from nine major stellarator experiments have been compiled. Robust dependences of the energy confinement time on the density and the heating power have been confirmed. Dependences on other operational parameters, i.e. the major and minor radii, magnetic field and the rotational transform , have been evaluated using inter-machine analyses. In order to express the energy confinement in a unified scaling law, systematic differences in each subgroup are quantified. An a posteriori approach using a confinement enhancement factor on ISS95 as a renormalizing configuration-dependent parameter yields a new scaling expression ISS04; . Gyro–Bohm characteristic similar to ISS95 has been confirmed for the extended database with a wider range of plasma parameters and magnetic configurations than in the study of ISS95. It has also been discovered that there is a systematic offset of energy confinement between magnetic configurations, and its measure correlates with the effective helical ripple of the external stellarator field. Full documentation of the International Stellarator Confinement Database is available at http://iscdb.nifs.ac.jp/ and http://www.ipp.mpg.de/ISS.


Fusion Engineering and Design | 1995

Blanket and divertor design for force free helical reactor (FFHR)

A. Sagara; O. Motojima; K.Y. Watanabe; S. Imagawa; H. Yamanishi; Osamu Mitarai; T. Satow; H. Tikaraishi

Abstract Conceptual design of blanket and divertor for a force free helical reactor (FFHR) is presented. The demonstration-relevant FFHR is a heliotron-type helical reactor having superconducting helical and poloidal coils based on the large helical device (LHD) which is now under construction in the National Institute for Fusion Science. The main feature of FFHR is force free configuration of helical coils, which allows us to simplify the coil supporting structure and to use high magnetic field instead of high plasma β. For the goal of a self-ignited D—T reactor of 3 GW thermal output, the design parameters for FFHR are investigated under the LHD scaling for energy confinement and density limit. In particular, to satisfy the reactor lifetime of 30 years, the engineering issues in FFHR are discussed by focusing on selection of structrual materials for 500 dpa, optimization of tritium breeding system with neutron multiplier, cooling with molten-salt Flibe and operation temperature in the blanket, radiation shielding to achieve a reduction of more than 5 orders of magnitude at superconducting coils, and steady state helium ash removal with an efficiency of around 30%.


Plasma Physics and Controlled Fusion | 2001

Configuration flexibility and extended regimes in Large Helical Device

H. Yamada; A. Komori; N. Ohyabu; O. Kaneko; K. Kawahata; K.Y. Watanabe; S. Sakakibara; S. Murakami; K. Ida; R. Sakamoto; Y. Liang; J. Miyazawa; Kenji Tanaka; Y. Narushima; S. Morita; S. Masuzaki; T. Morisaki; N. Ashikawa; L. R. Baylor; W.A. Cooper; M. Emoto; P.W. Fisher; H. Funaba; M. Goto; H. Idei; K. Ikeda; S. Inagaki; N. Inoue; M. Isobe; K. Khlopenkov

Recent experimental results in the Large Helical Device have indicated that a large pressure gradient can be formed beyond the stability criterion for the Mercier (high-n) mode. While the stability against an interchange mode is violated in the inward-shifted configuration due to an enhancement of the magnetic hill, the neoclassical transport and confinement of high-energy particle are, in contrast, improved by this inward shift. Mitigation of the unfavourable effects of MHD instability has led to a significant extension of the operational regime. Achievements of the stored energy of I MJ and the volume-averaged beta of 3% are representative results from this finding. A confinement enhancement factor above the international stellarator scaling ISS95 is also maintained around 1.5 towards a volume-averaged beta, (beta), of 3%. Configuration studies on confinement and MHD characteristics emphasize the superiority of the inward-shifted geometry to other geometries. The emergence of coherent modes appears to be consistent with the linear ideal MHD theory; however, the inward-shifted configuration has reduced heat transport in spite of a larger amplitude of magnetic fluctuation than the outward-shifted configuration. While neoclassical helical ripple transport becomes visible for the outward-shifted configuration in the collisionless regime, the inward-shifted configuration does not show any degradation of confinement deep in the collisionless regime (nu* < 0.1). The distinguished characteristics observed in the inward-shifted configuration help in creating a new perspective of MHD stability and related transport in net current-free plasmas. The first result of the pellet launching at different locations is also reported.


Fusion Science and Technology | 2010

Goal and Achievements of Large Helical Device Project

A. Komori; H. Yamada; S. Imagawa; O. Kaneko; K. Kawahata; K. Mutoh; N. Ohyabu; Y. Takeiri; K. Ida; T. Mito; Y. Nagayama; S. Sakakibara; R. Sakamoto; T. Shimozuma; K.Y. Watanabe; O. Motojima

Abstract The Large Helical Device (LHD) is a heliotron-type device employing large-scale superconducting magnets to enable advanced studies of net-current-free plasmas. The major goal of the LHD experiment is to demonstrate the high performance of helical plasmas in a reactor-relevant plasma regime. Engineering achievements and operational experience greatly contribute to the technological basis for a fusion energy reactor. Thorough exploration for scientific and systematic understanding of the physics in the LHD is an important step to a helical fusion reactor. In the 12 years since the initial operation, the physics database as well as operational experience has been accumulated, and the advantages of stable and steady-state features have been demonstrated by the combination of advanced engineering and the intrinsic physical advantages of helical systems in the LHD. The cryogenic system has been operated for 56 000 h in total without any serious trouble and routinely provides a confining magnetic field up to 2.96 T in steady state. The heating capability to date is 23 MW of neutral beam injection, 3 MW of ion cyclotron resonance frequency, and 2.5 MW of electron cyclotron resonance heating. Highlighted physical achievements are high beta (5.1%), high density (1.2 × 1021 m−3), and steady-state operation (3200 s with 490 kW).


Journal of Fusion Energy | 1996

Large Helical Device (LHD) program

M. Fujiwara; K. Yamazaki; M. Okamoto; J. Todoroki; T. Amano; T. Watanabe; T. Hayashi; Heiji Sanuki; Noriyoshi Nakajima; Kimitaka Itoh; H. Sugama; K. Ichiguchi; S. Murakami; O. Motojima; J. Yamamoto; T. Satow; N. Yanagi; S. Imagawa; K. Takahata; H. Tamura; A. Nishimura; A. Komori; N. Inoue; N. Noda; A. Sagara; Y. Kubota; N. Akaishi; S. Satoh; S. Tanahashi; H. Chikaraishi

The largest superconducting fusion machine, Large Helical Device (LHD), is now under construction in Japan and will begin operation in 1997. Design and construction of related R&D programs are now being carried out. The major radius of this machine is 3.9 m and the magnetic field on the plasma center is 3 T. The NbTi superconducting conductors are used in both helical coils and poloidal coils to produce this field. This will be upgraded in the second phase a using superfluid coil cooling technique. A negative ion source is being successfully developed for the NBI heating of LHD. This paper describes the present status and progress in its experimental planning and theoretical analysis on LHD, and the design and construction of LHD torus, heating, and diagnostics equipments.


Nuclear Fusion | 2005

Effects of global MHD instability on operational high beta-regime in LHD

K.Y. Watanabe; S. Sakakibara; Y. Narushima; H. Funaba; Kazumichi Narihara; K. Tanaka; T. Yamaguchi; K. Toi; S. Ohdachi; O. Kaneko; H. Yamada; Yasuhiro Suzuki; W.A. Cooper; S. Murakami; Noriyoshi Nakajima; I. Yamada; K. Kawahata; T. Tokuzawa; A. Komori

In the Large Helical Device (LHD), the highest operational averaged beta value has been expanded from 3.2% to 4% in the last 2 years by increasing the heating capability and exploring a new magnetic configuration with a high aspect ratio. Although the magneto-hydrodynamic (MHD) stability properties are considered to be unfavourable in the new high aspect configuration, the heating efficiency due to neutral beams and the transport properties are expected to be favourable in a high-beta range. In order to clarify the effect of the global ideal MHD unstable mode on the operational regimes in helical systems, especially the beta gradients in the peripheral region and the beta value, the MHD analysis and the transport analysis are performed in a high-beta range of up to 4% in LHD. In a high-beta range of more than 3%, the maxima of the observed thermal pressure gradients at a low order rational magnetic surface in the peripheral region are marginally unstable to the low-mode-number ideal MHD instability. Though a gradual degradation of the local transport in the region has been observed as beta increases, a disruptive degradation of the local transport does not appear in the beta range up to 4%.


Nuclear Fusion | 2000

Progress summary of LHD engineering design and construction

O. Motojima; Kenya Akaishi; H. Chikaraishi; H. Funaba; S. Hamaguchi; S. Imagawa; S. Inagaki; N. Inoue; A. Iwamoto; S. Kitagawa; A. Komori; Y. Kubota; R. Maekawa; S. Masuzaki; T. Mito; J. Miyazawa; T. Morisaki; K. Murai; T. Muroga; T. Nagasaka; Y. Nakamura; A. Nishimura; K. Nishimura; N. Noda; N. Ohyabu; A. Sagara; S. Sakakibara; R. Sakamoto; S. Satoh; T. Satow

In March 1998, the LHD project finally completed its eight year construction schedule. LHD is a superconducting (SC) heliotron type device with R = 3.9 m, ap = 0.6 m and B = 3 T, which has simple and continuous large helical coils. The major mission of LHD is to demonstrate the high potential of currentless helical-toroidal plasmas, which are free from current disruption and have an intrinsic potential for steady state operation. After intensive physics design studies in the 1980s, the necessary programmes of SC engineering R&D was carried out, and as a result, LHD fabrication technologies were successfully developed. In this process, a significant database on fusion engineering has been established. Achievements have been made in various areas, such as the technologies of SC conductor development, SC coil fabrication, liquid He and supercritical He cryogenics, development of low temperature structural materials and welding, operation and control, and power supply systems and related SC coil protection schemes. They are integrated, and nowadays comprise a major part of the LHD relevant fusion technology area. These issues correspond to the technological database necessary for the next step of future reactor designs. In addition, this database could be increased with successful commissioning tests just after the completion of the LHD machine assembly phase, which consisted of a vacuum leak test, an LHe cooldown test and a coil current excitation test. These LHD relevant engineering developments are recapitulated and highlighted. To summarize the construction of LHD as an SC device, the critical design with NbTi SC material has been successfully accomplished by these R&D activities, which enable a new regime of fusion experiments to be entered.


Nuclear Fusion | 2008

Dependence of spontaneous growth and suppression of the magnetic island on beta and collisionality in the LHD

Y. Narushima; K.Y. Watanabe; S. Sakakibara; K. Narihara; I. Yamada; Y. Suzuki; S. Ohdachi; N. Ohyabu; H. Yamada; Y. Nakamura

The dynamics of the magnetic island structure in the plasma are investigated in plasmas with a wide range of beta and collisionality. The perturbed magnetic field is diagnosed by a toroidal array of flux loops installed in the vacuum vessel on the Large Helical Device (LHD). It is found that the magnetic island grows with beta at relatively low beta values. In contrast, when the beta exceeds a critical value, the sign of the perturbed magnetic field suddenly reverses and its strength saturates to the magnetic field perturbation required to cancel the external perturbation. This suggests spontaneous healing of the magnetic island.


Nuclear Fusion | 2007

Extended steady-state and high-beta regimes of net-current free heliotron plasmas in the Large Helical Device

O. Motojima; H. Yamada; A. Komori; N. Ohyabu; T. Mutoh; O. Kaneko; K. Kawahata; T. Mito; K. Ida; S. Imagawa; Y. Nagayama; T. Shimozuma; K.Y. Watanabe; S. Masuzaki; J. Miyazawa; T. Morisaki; S. Morita; S. Ohdachi; N. Ohno; K. Saito; S. Sakakibara; Y. Takeiri; N. Tamura; K. Toi; M. Tokitani; M. Yokoyama; M. Yoshinuma; K. Ikeda; A. Isayama; K. Ishii

The performance of net-current free heliotron plasmas has been developed by findings of innovative operational scenarios in conjunction with an upgrade of the heating power and the pumping/fuelling capability in the Large Helical Device (LHD). Consequently, the operational regime has been extended, in particular, with regard to high density, long pulse length and high beta. Diversified studies in LHD have elucidated the advantages of net-current free heliotron plasmas. In particular, an internal diffusion barrier (IDB) by a combination of efficient pumping of the local island divertor function and core fuelling by pellet injection has realized a super dense core as high as 5 × 10 20 m -3 , which stimulates an attractive super dense core reactor. Achievements of a volume averaged beta of 4.5% and a discharge duration of 54 min with a total input energy of 1.6 GJ (490 kW on average) are also highlighted. The progress of LHD experiments in these two years is overviewed by highlighting IDB, high β and long pulse.

Collaboration


Dive into the K.Y. Watanabe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Funaba

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

K. Narihara

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

S. Ohdachi

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Komori

Graduate University for Advanced Studies

View shared research outputs
Researchain Logo
Decentralizing Knowledge