K. Yuvaraj
Indian Institute of Technology Madras
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by K. Yuvaraj.
Angewandte Chemie | 2014
R. S. Anju; Dipak Kumar Roy; Bijan Mondal; K. Yuvaraj; C. Arivazhagan; Koushik Saha; Babu Varghese; Sundargopal Ghosh
A series of novel Cp*-based (Cp*=η(5)-C5Me5) agostic, bis(σ-borate), and boratrane complexes have been synthesized from diruthenium and dirhodium analogues of pentaborane(9). The synthesis and structural characterization of the first neutral ruthenadiborane(6) analogue are also reported. This new route offers a very efficient method for the isolation of bis(σ-borate) and agostic complexes from diruthenapentaborane(9).
Chemistry: A European Journal | 2013
Dudekula Sharmila; K. Yuvaraj; Subrat Kumar Barik; Dipak Kumar Roy; Kiran Kumarvarma Chakrahari; Rongala Ramalakshmi; Bijan Mondal; Babu Varghese; Sundargopal Ghosh
The synthesis, structural characterization, and reactivity of new bridged borylene complexes are reported. The reaction of [{Cp*CoCl}2] with LiBH4·THF at -70 °C, followed by treatment with [M(CO)3(MeCN)3] (M=W, Mo, and Cr) under mild conditions, yielded heteronuclear triply bridged borylene complexes, [(μ3-BH)(Cp*Co)2(μ-CO)M(CO)5] (1-3; 1: M=W, 2: M=Mo, 3: M=Cr). During the syntheses of complexes 1-3, capped-octahedral cluster [(Cp*Co)2(μ-H)(BH)4{Co(CO)2}] (4) was also isolated in good yield. Complexes 1-3 are isoelectronic and isostructural to [(μ3-BH)(Cp*RuCO)2(μ-CO){Fe(CO)3}] (5) and [(μ3-BH)(Cp*RuCO)2(μ-H)(μ-CO){Mn(CO)3}] (6), with a trigonal-pyramidal geometry in which the μ3-BH ligand occupies the apical vertex. To test the reactivity of these borylene complexes towards bis-phosphine ligands, the room-temperature photolysis of complexes 1-3, 5, 6, and [{(μ3-BH)(Cp*Ru)Fe(CO)3}2(μ-CO)] (7) was carried out. Most of these complexes led to decomposition, although photolysis of complex 7 with [Ph2P(CH2)(n)PPh2] (n=1-3) yielded complexes 9-11, [3,4-(Ph2P(CH2)(n)PPh2)-closo-1,2,3,4-Ru2Fe2(BH)2] (9: n=1, 10: n=2, 11: n=3). Quantum-chemical calculations by using DFT methods were carried out on compounds 1-3 and 9-11 and showed reasonable agreement with the experimentally obtained structural parameters, that is, large HOMO-LUMO gaps, in accordance with the high stabilities of these complexes, and NMR chemical shifts that accurately reflected the experimentally observed resonances. All of the new compounds were characterized in solution by using mass spectrometry, IR spectroscopy, and (1)H, (13)C, and (11)B NMR spectroscopy and their structural types were unequivocally established by crystallographic analysis of complexes 1, 2, 4, 9, and 10.
Inorganic Chemistry | 2015
K. Yuvaraj; Dipak Kumar Roy; Bijan Mondal; Babu Varghese; Sundargopal Ghosh
This work describes the synthesis, structural characterizations, and electronic structures of a series of novel homometallic cubane clusters [(Cp*Ru)2{Ru(CO)2}2BH(μ3-E)(μ-H)B(μ-H)3M], (2, M = Cp*Ru, E = CO; 3, M = Ru(Cp*Ru)2(μ-CO)3(μ-H)BH), E = BH), [(Cp*Ru)3(μ3-CO)(BH)3(μ3-H)3], 4, and [(Cp*Ru)2(μ3-CO){Ru(CO)3}2(BH)2(μ-H)B], 5 (Cp* = η(5)-C5Me5). These cubane clusters have been isolated from a thermally driven reaction of diruthenium analogue of pentaborane(9) [(Cp*RuH)2B3H7], 1, and [Ru3(CO)12]. Structural and spectroscopic studies revealed the existence of triply bridged hydrogen (μ3-H) atoms that participate as a vertex in the cubane core formation for compounds 2, 3, and 4. In addition, the crystal structure of these clusters clearly confirms the presence of an electron precise borane ligand (borylene fragment) which is triply bridged to the trimetallic units. Bonding of these novel complexes has been studied computationally by DFT methods, and the studies demonstrate that the cubane clusters 2 and 3 possess 60 cluster valence electrons (cves) with six metal-metal bonds. All the new compounds have been characterized in solution by mass spectrometry; IR; and (1)H, (11)B, and (13)C NMR studies, and the structural types were unequivocally established by crystallographic analysis of compounds 2-5.
Pure and Applied Chemistry | 2015
K. Yuvaraj; Dipak Kumar Roy; C. Arivazhagan; Bijnaneswar Mondal; Sundargopal Ghosh
Abstract Thermolysis of an in situ generated intermediate [(Cp*Ta)2(BH3)2Cl2], 1 generated from the reaction of [Cp*TaCl4], (Cp* = η5-C5Me5) and [LiBH4·thf], in presence of [Ru3(CO)12] yielded pileo-[Cp*TaCl(μ-Cl)-B2H4Ru3(CO)8], 2 having two electrons fewer than seven pairs required for the observed square pyramidal geometry. Cluster 2 is the first example of an unsaturated cluster comprising early and late transition metals in a square pyramid core. This reaction also yielded [(Cp*Ta)2(B2H6)(B2H4Cl2)], 3 as a by-product. In addition, the reaction of [Cp*MoCl4] (Cp* = η5-C5Me5) with [LiBH4.thf] in presence of excess [MeI] at mild condition led to the isolation of periodinated dimolybdatetraborane [(Cp*Mo)2B4H3I5], 4 that hints a possible existence of [(Cp*Mo)2B4H8]. After the isolation of periodinated 4, we extended this chemistry towards the late transition metallaborane [(Cp*Rh)3B4H4], 5 using [PtBr2] as brominating source. Although all the attempts to isolate perbrominated rhodaborane failed, we have isolated partially brominated rhodaborane clusters [(Cp*Rh)3(BH)-(BBr)3], 6 and [(Cp*Rh)3(BH)3(BBr)], 7. All the compounds were characterized by IR and 1H, 11B and 13C NMR spectroscopy in solution, and the solid-state structures of 2, 4 and 6 were established by crystallographic analysis.
Chemistry: A European Journal | 2013
Shubhankar Kumar Bose; Dipak Kumar Roy; Pritam Shankhari; K. Yuvaraj; Bijan Mondal; Amrita Sikder; Sundargopal Ghosh
Organometallics | 2013
K. Yuvaraj; Dipak Kumar Roy; K. Geetharani; Bijan Mondal; V. P. Anju; Pritam Shankhari; V. Ramkumar; Sundargopal Ghosh
Journal of Organometallic Chemistry | 2015
Chokkapu Eswara Rao; K. Yuvaraj; Sundargopal Ghosh
Chemistry: A European Journal | 2016
K. Bakthavachalam; K. Yuvaraj; Mohammad Zafar; Sundargopal Ghosh
Dalton Transactions | 2014
K. Yuvaraj; Dipak Kumar Roy; V. P. Anju; Bijnaneswar Mondal; Babu Varghese; Sundargopal Ghosh
Journal of Organometallic Chemistry | 2016
Dipak Kumar Roy; K. Yuvaraj; Rajamony Jagan; Sundargopal Ghosh