Ka Bian
George Washington University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ka Bian.
Journal of Clinical Hypertension | 2008
Ka Bian; Marie Francoise Doursout; Ferid Murad
In contrast with the short research history of the enzymatic synthesis of nitric oxide (NO), the introduction of nitrate‐containing compounds for medicinal purposes marked its 150th anniversary in 1997. Glyceryl trinitrate (nitroglycerin) is the first compound of this category. On October 12, 1998, the Nobel Assembly awarded the Nobel Prize in Medicine or Physiology to scientists Robert Furchgott, Louis Ignarro, and Ferid Murad for their discoveries concerning NO as a signaling molecule in the cardiovascular system. NO‐mediated signaling is a recognized component in various physiologic processes (eg, smooth muscle relaxation, inhibition of platelet and leukocyte aggregation, attenuation of vascular smooth muscle cell proliferation, neurotransmission, and immune defense), to name only a few. NO has also been implicated in the pathology of many inflammatory diseases, including arthritis, myocarditis, colitis, and nephritis and a large number of pathologic conditions such as amyotrophic lateral sclerosis, cancer, diabetes, and neurodegenerative diseases. Some of these processes (eg, smooth muscle relaxation, platelet aggregation, and neurotransmission) require only a brief production of NO at low nanomolar concentrations and are dependent on the recruitment of cyclic guanosine monophosphate (cGMP)‐dependent signaling. Other processes are associated with direct interaction of NO or reactive nitrogen species derived from it with target proteins and requires a more sustained production of NO at higher concentrations but do not involve the cGMP pathway.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Ka Bian; Zhonghong Gao; Norman W. Weisbrodt; Ferid Murad
Recently, substantial evidence has emerged that revealed a very close association between the formation of nitrotyrosine and the presence of activated granulocytes containing peroxidases, such as myeloperoxidase. Peroxidases share heme-containing homology and can use H2O2 to oxidize substrates. Heme is a complex of iron with protoporphyrin IX, and the iron-containing structure of heme has been shown to be an oxidant in several model systems where the prooxidant effects of free iron, heme, and hemoproteins may be attributed to the formation of hypervalent states of the heme iron. In the current study, we have tested the hypothesis that free heme and iron play a crucial role in NO2-Tyr formation. The data from our study indicate that: (i) heme/iron catalyzes nitration of tyrosine residues by using hydrogen peroxide and nitrite, a reaction that revealed the mechanism underlying the protein nitration by peroxidase, H2O2, and NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document}; (ii) H2O2 plays a key role in the protein oxidation that forms the basis for the protein nitration, whereas nitrite is an essential element that facilitates nitration by the heme(Fe), H2O2, and the NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document} system; (iii) the formation of a Fe(IV) hypervalent compound may be essential for heme(Fe)-catalyzed nitration, whereas O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{{\bullet}-}}}\end{equation*}\end{document} (ONOO− formation), •OH (Fenton reaction), and compound III are unlikely to contribute to the reaction; and (iv) hemoprotein-rich tissues such as cardiac muscle are vulnerable to protein nitration in pathological conditions characterized by the overproduction of H2O2 and NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document}, or nitric oxide.
Journal of Immunology | 2000
Jens Kildsgaard; Travis J. Hollmann; Kirstin W. Matthews; Ka Bian; Ferid Murad; Rick A. Wetsel
The complement anaphylatoxin C3a, on binding the C3aR, mediates numerous proinflammatory activities. In addition, recent in vitro studies with C3a have implicated C3aR as a possible anti-inflammatory receptor. Because of its possible dual role in modulating the inflammatory response, it is uncertain whether C3aR contributes to the pathogenesis of endotoxin shock. Here, the targeted-disruption of the C3aR in mice is reported. These mice exhibit an enhanced lethality to endotoxin shock with a pronounced gene dosage effect. In addition, the plasma concentration of IL-1β was significantly elevated in the C3aR−/− mice compared with their littermates following LPS challenge. These findings demonstrate an important protective role for the C3aR in endotoxin shock and indicate that, in addition to its traditionally accepted functions in mediating inflammation, the C3aR also acts in vivo as an anti-inflammatory receptor by attenuating LPS-induced proinflammatory cytokine production.
Frontiers in Bioscience | 2003
Ka Bian; Ferid Murad
On October 12, 1998, the Nobel Assembly awarded the Nobel Prize in Medicine and Physiology to scientists Robert Furchgott, Louis Ignarro, and Ferid Murad for their discoveries concerning nitric oxide as a signalling molecule in the cardiovascular system. In contrast with the short research history of the enzymatic synthesis of NO, the introduction of nitrate-containing compounds for medicinal purposes marked its 150th anniversary in 1997. Glyceryl trinitrate (nitroglycerin; GTN) is the first compound of this category. Alfred Nobel (the founder of Nobel Prize) himself had suffered from angina pectoris and was prescribed nitroglycerin for his chest pain. Almost a century later, research in the NO field has dramatically extended and the role of NO in physiology and pathology has been extensively studied. The steady-state concentration and the biological effects of NO are critically determined not only by its rate of formation, but also by its rate of decomposition. Biotransformation of NO and its related N-oxides occurs via different metabolic routes within the body and presents another attractive field for our research as well as for the venture of drug discovery.
Free Radical Biology and Medicine | 2001
Ka Bian; Ferid Murad
The administration of bacterial lipopolysaccharide (LPS; endotoxin) can stimulate the development of the systemic inflammatory response syndrome, which can compromise the function of many organ systems, resulting in multiple organ failure. Activation of macrophages and cytokines by endotoxin and the subsequent formation of reactive oxygen and nitrogen species are of central pathogenic importance in various inflammatory diseases including sepsis. However, whether different tissues behave the same in pathological changes produced by LPS and what factors may affect pathological processes and protein tyrosine nitration in different organs, still remain to be evaluated. In the present study, we investigated the distribution of nitrotyrosine and other pathological changes induced by LPS in rat liver, spleen, and lung, all of which are rich in macrophages and endothelial cells. Our study revealed two important findings: first, a denitration activity in spleen white pulp might play a key role to protect the areas from nitration. Similar activity might also exist in endothelial cells of sinusoids and capillaries. Second, protein nitration might not induce significant tissue damage as shown in liver and spleen. However, inflammatory infiltration with increased formation NO* and other reactive species may result in severe tissue injury, as demonstrated in lung after LPS administration.
American Journal of Physiology-renal Physiology | 1999
Ka Bian; Karen L. Davis; Jeff Kuret; Lester I. Binder; Ferid Murad
The presence of nitrotyrosine in the kidney has been associated with several pathological conditions. In the present study, we investigated nitrotyrosine formation in rat kidney after animals received endotoxin for 24 h. With lipopolysaccharide (LPS) treatment, immunohistochemical data demonstrated intense nitrotyrosine staining throughout the kidney. In spite of marked nitrotyrosine formation, the architectural appearance of tubules, glomeruli, and capillaries remained intact when examined by reticulin staining. Our data suggested that the marked staining of nitrotyrosine in proximal tubular epithelial cells was in the subapical compartment where the endocytic lysosomal apparatus is located. Thus a large portion of nitrotyrosine may come from the hydrolysis of nitrated proteins that are reabsorbed by the proximal tubule during the LPS treatment. We also found the colocalization of nitric oxide synthase (NOS-1) and nitrotyrosine within the macula densa of LPS-treated rats by using a double fluorescence staining method. In renal arterial vessels, vascular endothelial cells were more strongly stained for nitrotyrosine than vascular smooth muscle cells. Control animals without LPS treatment showed much less renal staining for nitrotyrosine. The general distribution of nitrotyrosine staining in control rat renal cortex is in the proximal and convoluted tubules, whereas the endothelial cells of vasa recta are major areas of nitrotyrosine staining in inner medulla. The renal distribution of nitrotyrosine in control and LPS-treated animals suggests that protein nitration may participate in renal regulation and injury in ways that are yet to be defined.
Journal of Burn Care & Research | 2008
Haifeng Zhu; Xiaofei Wei; Ka Bian; Ferid Murad
Increasing evidence showed the important role of nitric oxide (NO) in skin repair and reconstruction. In this report, we investigated the effects of NO on 2nd degree burn wound of mice with a newly developed topical NO-gel. Using regular hematoxylin&eosin staining and immunohistochemistry, we determined the effects of NO on wound closure, hair follicle regeneration, collagen deposition, angiogenesis, and inflammatory cell infiltration in the wound of mice during wound healing. NO treatment significantly accelerated re-epithelialization by 50%, which has resulted in a markedly faster wound closure than that in control group. NO significantly promoted follicle stem cell recruitment, a key player in re-epithelialization. In addition, hair follicle regeneration also was enhanced by NO treatment in mice. As we have reported with rat model, NO treatment significantly increased the number of procollagen-expressing fibroblasts, which peaked by day 10 after burn wound. We also demonstrated an increase of angiogenesis in NO treated wounds compared with that in the control group during wound healing. Finally, we found that the NO gel promoted wound bed infiltration and retention of inflammatory cells that are a major source of growth factors and cytokines during the healing processes. These observations suggest that NO released from a topical preparation has the potential to enhance burn wound healing by regulation of many cellular processes in the skin.
Seminars in Perinatology | 2000
Emil Martin; Karen L. Davis; Ka Bian; Yu Chen Lee; Ferid Murad
The understanding of the formation and biological actions of nitric oxide (NO) has grown extensively during the past two decades. With the discoveries of the biological effects of NO and nitrovasodilators on cyclic guanosine monophosphate, with the elucidation of the biochemical mechanisms of NO synthesis, and with the growing knowledge of regulation of NO synthases, the complexities of this signal transduction cascade and its participation in numerous cell signaling processes continues. NO can be recognized as an intracellular second messenger, a local substance for regulation of neighboring cells, a neurotransmitter, and probably a hormone acting at distant sites.
Vascular Health and Risk Management | 2011
Yong-Liang Xue; Hai-Xia Shi; Ferid Murad; Ka Bian
The vasodilatory effect of cinnamaldehyde was investigated for its mechanism of action using isolated rings of rat aorta. Cinnamaldehyde relaxed aortic rings precontracted with phenylephrine in a dose-dependent manner, was not affected by either the presence or removal of the endothelium. Pretreatment with NG-nitro-L-arginine methyl ester and 1H-[1,2,4]-oxadiazole-[4,3-a]-quinoxalin-1-one could not block vasodilation by cinnamaldehyde, indicating that nitric oxide signaling is not involved. Potassium channel blockers, such as glibenclamide, tetraethylammonium, and BaCl2, had no effect on the relaxation produced by cinnamaldehyde. In addition, treatment with either indomethacin or propranolol did not affect cinnamaldehyde-induced vasodilatation. On the other hand, pretreatment of endothelium-denuded rings with cinnamaldehyde significantly inhibited vasoconstriction induced by endogenous vasoconstrictors, including angiotensin II, 5-hydroxytryptamine, dopamine, endothelin-1, and phenylephrine. In a Ca2+-free experimental setting, this natural vasodilator not only blocked Ca2+ influx-dependent vasoconstriction by either phenylephrine or KCl, but also inhibited phenylephrine-induced tonic contraction, which relies on intracellular Ca2+ release. This study shows that endothelium-independent, Ca2+ influx and/or an inhibitory release mechanism contributes to the vasodilatory effect of cinnamaldehyde.
Iubmb Life | 2012
Ka Bian; Farshid Ghassemi; Alex Sotolongo; Alan Siu; Lauren Shauger; Alex Kots; Ferid Murad
The role of NO and cGMP signaling in tumor biology has been extensively studied during the past three decades. However, whether the pathway is beneficial or detrimental in cancer is still open to question. We suggest several reasons for this ambiguity: first, although NO participates in normal signaling (e.g., vasodilation and neurotransmission), NO is also a cytotoxic or apoptotic molecule when produced at high concentrations by inducible nitric‐oxide synthase (iNOS or NOS‐2). In addition, the cGMP‐dependent (NO/sGC/cGMP pathway) and cGMP‐independent (NO oxidative pathway) components may vary among different tissues and cell types. Furthermore, solid tumors contain two compartments: the parenchyma (neoplastic cells) and the stroma (nonmalignant supporting tissues including connective tissue, blood vessels, and inflammatory cells) with different NO biology. Thus, the NO/sGC/cGMP signaling molecules in tumors as well as the surrounding tissue must be further characterized before targeting this signaling pathway for tumor therapy. In this review, we focus on the NOS‐2 expression in tumor and surrounding cells and summarized research outcome in terms of cancer therapy. We propose that a normal function of the sGC‐cGMP signaling axis may be important for the prevention and/or treatment of malignant tumors. Inhibiting NOS‐2 overexpression and the tumor inflammatory microenvironment, combined with normalization of the sGC/cGMP signaling may be a favorable alternative to chemotherapy and radiotherapy for malignant tumors.