Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ka Chen is active.

Publication


Featured researches published by Ka Chen.


Cell | 2003

Migfilin and Mig-2 link focal adhesions to filamin and the actin cytoskeleton and function in cell shape modulation.

Yizeng Tu; Shan Wu; Xiaohua Shi; Ka Chen; Chuanyue Wu

Cell-extracellular matrix adhesion is an important determinant of cell morphology. We show here that migfilin, a LIM-containing protein, localizes to cell-matrix adhesions, associates with actin filaments, and is essential for cell shape modulation. Migfilin interacts with the cell-matrix adhesion protein Mig-2 (mitogen inducible gene-2), a mammalian homolog of UNC-112, and the actin binding protein filamin through its C- and N-terminal domains, respectively. Loss of Mig-2 or migfilin impairs cell shape modulation. Mig-2 recruits migfilin to cell-matrix adhesions, while the interaction with filamin mediates the association of migfilin with actin filaments. Migfilin therefore functions as an important scaffold at cell-matrix adhesions. Together, Mig-2, migfilin and filamin define a connection between cell matrix adhesions and the actin cytoskeleton and participate in the orchestration of actin assembly and cell shape modulation.


Journal of Biological Chemistry | 2003

PINCH-1 is an obligate partner of integrin-linked kinase (ILK) functioning in cell shape modulation, motility, and survival.

Tomohiko Fukuda; Ka Chen; Xiaohua Shi; Chuanyue Wu

PINCH-1 is a widely expressed focal adhesion protein that forms a ternary complex with integrin-linked kinase (ILK) and CH-ILKBP/actopaxin/α-parvin (abbreviated as α-parvin herein). We have used RNA interference, a powerful approach of reverse genetics, to investigate the functions of PINCH-1 and ILK in human cells. We report here the following. First, PINCH-1 and ILK, but not α-parvin, are essential for prompt cell spreading and motility. Second, PINCH-1 and ILK, like α-parvin, are crucial for cell survival. Third, PINCH-1 and ILK are required for optimal activating phosphorylation of PKB/Akt, an important signaling intermediate of the survival pathway. Whereas depletion of ILK reduced Ser473 phosphorylation but not Thr308 phosphorylation of PKB/Akt, depletion of PINCH-1 reduced both the Ser473 and Thr308 phosphorylation of PKB/Akt. Fourth, PINCH-1 and ILK function in the survival pathway not only upstream but also downstream (or in parallel) of protein kinase B (PKB)/Akt. Fifth, PINCH-1, ILK and to a less extent α-parvin are mutually dependent in maintenance of their protein, but not mRNA, levels. The coordinated down-regulation of PINCH-1, ILK, and α-parvin proteins is mediated at least in part by proteasomes. Finally, increased expression of PINCH-2, an ILK-binding protein that is structurally related to PINCH-1, prevented the down-regulation of ILK and α-parvin induced by the loss of PINCH-1 but failed to restore the survival signaling or cell shape modulation. These results provide new insights into the functions of PINCH proteins in regulation of ILK and α-parvin and control of cell behavior.


Journal of Cell Science | 2002

Assembly of the PINCH-ILK-CH-ILKBP complex precedes and is essential for localization of each component to cell-matrix adhesion sites

Yongjun Zhang; Ka Chen; Yizeng Tu; Algirdas Velyvis; Yanwu Yang; Jun Qin; Chuanyue Wu

PINCH, integrin-linked kinase (ILK) and calponin homology-containing ILK-binding protein (CH-ILKBP) form a ternary complex that plays crucial roles at cell-extracellular matrix adhesion sites. To understand the mechanism underlying the complex formation and recruitment to cell-adhesion sites we have undertaken a combined structural, mutational and cell biological analysis. Three-dimensional structure-based point mutations identified specific PINCH and ILK sites that mediate the complex formation. Analyses of the binding defective point mutants revealed that the assembly of the PINCH-ILK-CH-ILKBP complex is essential for their localization to cell-extracellular matrix adhesion sites. The formation of the PINCH-ILK-CH-ILKBP complex precedes integrin-mediated cell adhesion and spreading. Furthermore, inhibition of protein kinase C, but not that of actin polymerization, inhibited the PINCH-ILK-CH-ILKBP complex formation, suggesting that the PINCH-ILK-CH-ILKBP complex likely serves as a downstream effector of protein kinase C in the cellular control of focal adhesion assembly. Finally, we provide evidence that the formation of the PINCH-ILK-CH-ILKBP complex, while necessary, is not sufficient for ILK localization to cell-extracellular matrix adhesion sites. These results provide new insights into the molecular mechanism underlying the assembly and regulation of cell-matrix adhesion structures.


Journal of Biological Chemistry | 2007

The MIG-2/Integrin Interaction Strengthens Cell-Matrix Adhesion and Modulates Cell Motility

Xiaohua Shi; Yan Qing Ma; Yizeng Tu; Ka Chen; Shan Wu; Koichi Fukuda; Jun Qin; Edward F. Plow; Chuanyue Wu

Integrin-mediated cell-matrix adhesion plays an important role in control of cell behavior. We report here that MIG-2, a widely expressed focal adhesion protein, interacts with β1 and β3 integrin cytoplasmic domains. Integrin binding is mediated by a single site within the MIG-2 FERM domain. Functionally, the MIG-2/integrin interaction recruits MIG-2 to focal adhesions. Furthermore, using αIIbβ3 integrin-expressing Chinese hamster ovary cells, a well described model system for integrin activation, we show that MIG-2 promotes integrin activation and enhances cell-extracellular matrix adhesion. Although MIG-2 is expressed in many cell types, it is deficient in certain colon cancer cells. Expression of MIG-2, but not of an integrin binding-defective MIG-2 mutant, in MIG-2-null colon cancer cells strengthened cell-matrix adhesion, promoted focal adhesion formation, and reduced cell motility. These results suggest that the MIG-2/integrin interaction is an important element in the cellular control of integrin-mediated cell-matrix adhesion and that loss of this interaction likely contributes to high motility of colon cancer cells.


Journal of Biological Chemistry | 2008

PINCH-1 Regulates the ERK-Bim Pathway and Contributes to Apoptosis Resistance in Cancer Cells

Ka Chen; Yizeng Tu; Yongjun Zhang; Harry C. Blair; Lin Zhang; Chuanyue Wu

Resistance to apoptosis is a hallmark of cancer cells. We report here that PINCH-1, a cytoplasmic component of cell-extracellular matrix adhesions, is required for protection of multiple types of cancer cells from apoptosis. Furthermore, using HT-1080 fibrosarcoma cells as a model system, we have investigated the signaling pathway through which PINCH-1 contributes to apoptosis resistance. Loss of PINCH-1 markedly increases the level of Bim and promotes Bim translocation to mitochondria, resulting in activation of the intrinsic apoptosis pathway. Depletion of Bim completely blocked apoptosis induced by the loss of PINCH-1. Thus, PINCH-1 contributes to apoptosis resistance through suppression of Bim. Mechanistically, PINCH-1 suppresses Bim not only transcriptionally but also post-transcriptionally. PINCH-1 promotes activating phosphorylation of Src family kinase and ERK1/2. Consistent with this, ERK1/2-mediated Ser69 phosphorylation of Bim, a key signal for turnover of Bim, is suppressed by the removal of PINCH-1. Our results demonstrate a strong dependence of multiple types of apoptosis-resistant cancer cells on PINCH-1 and provide new insights into the molecular mechanism by which cancer cells are protected from apoptosis.


Laboratory Investigation | 2005

Role of the integrin-linked kinase/PINCH1/alpha-parvin complex in cardiac myocyte hypertrophy

Hua Chen; Xueyin N. Huang; Wen Yan; Ka Chen; Lida Guo; Lekha Tummalapali; Shoukat Dedhar; René St-Arnaud; Chuanyue Wu; Jorge L. Sepulveda

Outside-in signaling from fibronectin (FN) through integrin receptors has been shown to play an important role in promoting cardiac myocyte hypertrophy and synergizes with other hypertrophic stimuli such as the alpha-adrenergic agonist phenylephrine (PE) and mechanical strain. The integrin-linked kinase (ILK) is a critical molecule involved in cell adhesion, motility and survival in nonmyocytes such as fibroblasts and epithelial cells. Its role in cardiac myocytes is unclear. In this study, we demonstrate that (1) ILK forms a complex with PINCH1 and alpha-parvin proteins (IPAP1 complex) in neonatal rat ventricular myocytes; (2) localization of IPAP1 complex proteins to costameres in cardiac myocytes is stimulated by FN, PE and synergistically by the combination of FN and PE in an integrin β1-dependent manner; (3) a dominant-negative mutant lacking the PINCH-binding N-terminus of ILK (ILK-C) prevents costamere association of ILK and alpha-parvin, but not PINCH1; (4) FN- and PE-induced hypertrophy, measured by increased protein/DNA ratio, beating frequency and atrial natriuretic peptide expression, is stimulated by low levels of ILK-C but repressed by high ILK-C expression; and (5) overexpression of ILK-C, as well as deletion of the ILK gene in mouse neonatal ventricular myocytes, induces marked apoptosis of cardiac myocytes. These results suggest that the IPAP1 complex plays an important role in mediating integrin-signaling pathways that regulate cardiac myocyte hypertrophy and resistance to apoptosis.


Journal of Cell Science | 2005

Physical and functional association of migfilin with cell-cell adhesions

Vasiliki Gkretsi; Yongjun Zhang; Yizeng Tu; Ka Chen; Donna B. Stolz; Yanqiang Yang; Simon Watkins; Chuanyue Wu

Cell-cell junctions are essential for epithelial and endothelial tissue formation and communication between neighboring cells. We report here that migfilin, a recently identified component of cell-extracellular matrix adhesions, is recruited to cell-cell junctions in response to cadherin-mediated cell-cell adhesions. Migfilin is detected at cell-cell junctions in both epithelial and endothelial cells. It forms detergent-resistant, discrete clusters that associate with actin bundles bridging neighboring cells. Immunoelectron microscopic analyses reveal that migfilin is closely associated with β-catenin, but not desmosomes, at cell-cell junctions. Furthermore, we show that the C-terminal LIM domains, but not its N-terminal domain, mediates migfilin localization to cell-cell junctions. The site mediating the localization of migfilin to cell-cell junctions at least partially overlaps with that mediating the localization of migfilin to cell-ECM adhesions. Finally, siRNA-mediated depletion of migfilin compromised the organization of adherens junctions and weakened cell-cell association. These results identify migfilin as a component of adherens junctions and suggest an important role for migfilin in the organization of the cell-cell adhesion structure.


The International Journal of Biochemistry & Cell Biology | 2002

Nck-2 interacts with focal adhesion kinase and modulates cell motility.

Silvia Goicoechea; Yizeng Tu; Yun Hua; Ka Chen; Tang-Long Shen; Jun-Lin Guan; Chuanyue Wu

Nck-2 is a ubiquitously expressed adaptor protein comprising primarily three N-terminal SH3 domains and one C-terminal SH2 domain. We report here that Nck-2 interacts with focal adhesion kinase (FAK), a cytoplasmic protein tyrosine kinase critically involved in the cellular control of motility. Using a mutational strategy, we have found that the formation of the Nck-2-FAK complex is mediated by interactions involving multiple SH2 and SH3 domains of Nck-2. The Nck-2 SH2 domain-mediated interaction with FAK is dependent on phosphorylation of Tyr397, a site that is involved in the regulation of cell motility. A fraction of Nck-2 co-localizes with FAK at cell periphery in spreading cells. Furthermore, overexpression of Nck-2 modestly decreased cell motility, whereas overexpression of a mutant form of Nck-2 containing the SH2 domain but lacking the SH3 domains significantly promoted cell motility. These results identify a novel interaction between Nck-2 and FAK and suggest a role of Nck-2 in the modulation of cell motility.


Journal of Biological Chemistry | 2012

Critical role of Filamin-binding LIM protein 1 (FBLP-1)/Migfilin in regulation of bone remodeling

Guozhi Xiao; Hongqiang Cheng; Huiling Cao; Ka Chen; Yizeng Tu; Shibing Yu; Hongli Jiao; Shengyong Yang; Hee-Jeong Im; Di Chen; Ju Chen; Chuanyue Wu

Background: Bone remodeling must be precisely controlled to maintain a healthy bone mass. Results: Knock-out of FBLP-1/migfilin causes a severe osteopenic phenotype in mice. Conclusion: FBLP-1/migfilin regulates bone remodeling through modulating both osteoblast behavior and osteoclast differentiation. Significance: Identifying molecules that regulate bone remodeling is critical for understanding the pathogenesis of bone diseases and developing novel therapeutic approaches. Bone remodeling is a complex process that must be precisely controlled to maintain a healthy life. We show here that filamin-binding LIM protein 1 (FBLP-1, also known as migfilin), a kindlin- and filamin-binding focal adhesion protein, is essential for proper control of bone remodeling. Genetic inactivation of FBLIM1 (the gene encoding FBLP-1) in mice resulted in a severe osteopenic phenotype. Primary FBLP-1 null bone marrow stromal cells (BMSCs) exhibited significantly reduced extracellular matrix adhesion and migration compared with wild type BMSCs. Loss of FBLP-1 significantly impaired the growth and survival of BMSCs in vitro and decreased the number of osteoblast (OB) progenitors in bone marrow and OB differentiation in vivo. Furthermore, the loss of FBLP-1 caused a dramatic increase of osteoclast (OCL) differentiation in vivo. The level of receptor activator of nuclear factor κB ligand (RANKL), a key regulator of OCL differentiation, was markedly increased in FBLP-1 null BMSCs. The capacity of FBLP-1 null bone marrow monocytes (BMMs) to differentiate into multinucleated OCLs in response to exogenously supplied RANKL, however, was not different from that of WT BMMs. Finally, we show that a loss of FBLP-1 promotes activating phosphorylation of ERK1/2. Inhibition of ERK1/2 activation substantially suppressed the increase of RANKL induced by the loss of FBLP-1. Our results identify FBLP-1 as a key regulator of bone homeostasis and suggest that FBLP-1 functions in this process through modulating both the intrinsic properties of OB/BMSCs (i.e., BMSC-extracellular matrix adhesion and migration, cell growth, survival, and differentiation) and the communication between OB/BMSCs and BMMs (i.e., RANKL expression) that controls osteoclastogenesis.


Journal of Biological Chemistry | 2009

Migfilin interacts with Src and contributes to cell-matrix adhesion-mediated survival signaling

Jianping Zhao; Yongjun Zhang; Sujay Subbayya Ithychanda; Yizeng Tu; Ka Chen; Jun Qin; Chuanyue Wu

Integrin-mediated cell-extracellular matrix (ECM) adhesion is essential for protection of epithelial cells against apoptosis, but the underlying mechanism is incompletely understood. Here we show that migfilin, an integrin-proximal adaptor protein, interacts with Src and contributes to cell-ECM-mediated survival signaling. Loss of cell-ECM adhesion markedly reduces the migfilin level in untransformed epithelial cells and concomitantly induces apoptosis. Overexpression of migfilin substantially desensitizes cell detachment-induced apoptosis. Conversely, depletion of migfilin promotes apoptosis despite the presence of cell-ECM adhesion. At the molecular level migfilin directly interacts with Src, and the migfilin binding surface overlaps with the inhibitory intramolecular interaction sites in Src. Consequently, the binding of migfilin activates Src, resulting in suppression of apoptosis. Our results reveal a novel mechanism by which cell-ECM adhesion regulates Src activation and survival signaling. This migfilin-mediated signaling pathway is dysfunctional in multiple types of carcinoma cells, which likely contributes to aberrant Src activation and anoikis resistance in the cancerous cells.

Collaboration


Dive into the Ka Chen's collaboration.

Top Co-Authors

Avatar

Chuanyue Wu

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Yizeng Tu

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Yongjun Zhang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianping Zhao

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Lida Guo

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Xiaohua Shi

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Di Chen

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Guozhi Xiao

Rush University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge