Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ka Yin Leung is active.

Publication


Featured researches published by Ka Yin Leung.


Molecular Microbiology | 2007

Dissection of a type VI secretion system in Edwardsiella tarda

Jun Zheng; Ka Yin Leung

Bacterial pathogens use different protein secretion systems to deliver virulence factors. Recently, a novel secretion system was discovered in several Gram‐negative bacterial pathogens, and was designated as the type VI secretion system (T6SS). In Edwardsiella tarda, a partial E. tardavirulent protein (EVP) gene cluster was implicated in protein secretion. Here, we identified the entire EVP cluster as a T6SS and two additional secreted proteins (EvpI, a homologue of VgrG, and EvpP) were found. We systematically mutagenized all the 16 EVP genes and found that the secretion of EvpP was dependent on 13 EVP proteins including EvpC (a homologue of Hcp) and EvpI but not EvpD and EvpJ. All EVP mutants except ΔevpD were attenuated in blue gourami fish. The 16 EVP proteins can be grouped according to their functions and cellular locations. The first group comprises 11 non‐secreted and possibly intracellular apparatus proteins. Among them, EvpO, a putative ATPase which contained a Walker A motif, showed possible interactions with three EVP proteins (EvpA, EvpL and EvpN). The second group includes three secreted proteins (EvpC, EvpI and EvpP). The secretion of EvpC and EvpI is mutually dependent, and they are required for the secretion of EvpP. The interaction between EvpC and EvpP was demonstrated. Lastly, two proteins (EvpD and EvpJ) are not required for the T6SS‐dependent secretion.


Molecular Microbiology | 2004

Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis

P. S. Srinivasa Rao; Yoshiyuki Yamada; Yuen Peng Tan; Ka Yin Leung

Edwardsiella tarda is an important cause of haemorrhagic septicaemia in fish and also of gastro‐ and extraintestinal infections in humans. Using a combination of comparative proteomics and TnphoA mutagenesis, we have identified five proteins that may contribute to E. tarda PPD130/91 pathogenesis. Lowered protein secretion, impaired autoaggregation and the absence of six proteins were observed only in three highly attenuated mutants when cultured in Dulbeccos modified eagle medium (DMEM). Five out of six proteins could be identified by their mass spectra. Three proteins were identified as putative effector proteins (EseB, EseC and EseD) that are homologous to SseB, SseC and SseD of a type III secretion system (TTSS) in Salmonella species. The other two were EvpA and EvpC, homologous to Eip20 and Eip18 in Edwardsiella ictaluri. The complete sequencing and homology studies of evpA–H indicate that similar gene clusters are widely distributed in other pathogens such as Escherichia, Salmonella, Vibrio and Yersinia species with unknown functions. Insertional inactivation and deletion of evpB or evpC led to lower replication rates in gourami phagocytes, and reduced protein secretion and virulence in blue gourami. Complementation of these deletion mutants showed partial recovery in the above three phenotypes, indicating that these genes are vital for E. tarda pathogenesis. The transport of the EvpC protein may not use the TTSS in E. tarda. The expression of EvpA and EvpC as well as EseB, EseC and EseD was temperature dependent (suppressed at 37°C), and disruption of esrB affected their expression. The present study identifies two possible secretion systems (TTSS and Evp) that are vital for E. tarda pathogenesis.


Microbiology | 2000

Use of green fluorescent protein (GFP) to study the invasion pathways of Edwardsiella tarda in in vivo and in vitro fish models.

S. H. M. Ling; X. H. Wang; L. Xie; Tit Meng Lim; Ka Yin Leung

Edwardsiella tarda is a fish pathogen that causes systemic infections in many food and ornamental fish. E. tarda PPD130/91 and PPD125/87 were selected as representatives of the virulent and avirulent groups, respectively, from eight fish isolates, and transformed with plasmids encoding either green fluorescent protein (pGFPuv) or blue fluorescent protein (pBFP2). Two host models were used to study the invasion pathway of E. tarda in vitro and in vivo. Epithelioma papillosum of carp (EPC) was used as the first model. Virulent and avirulent E. tarda strains were found to adhere to and invade EPC cells. Interactions between E. tarda and host cells examined under confocal microscopy and intracellular growth were followed at different time points. Bacterial internalization of PPD130/91 and PPD125/87 involved microfilaments and protein tyrosine kinase since cytochalasin D (an inhibitor of microfilament polymerization) and genistein (an inhibitor of protein tyrosine kinase) prevented internalization. Confocal studies revealed co-localization of polymerized actin with bacteria. Staurosporine, a protein kinase C inhibitor, accelerated internalization of PPD125/87, whereas PD098059, a mitogen-activated protein kinase (MAPK) kinase inhibitor prevented internalization of PPD130/91. In the second model, blue gourami were infected with E. tarda intramuscularly. Mortalities were observed in PPD130/91(pGFPuv)-infected fish with high bacterial numbers detectable in all organs. PPD125/87(pBFP2)-infected fish did not die and the bacterial population decreased over time. Mixed infections comprised of both PPD130/91(pGFPuv) and PPD125/87(pBFP2), where inoculum size was similar to the single infections, caused mortalities in fish. High bacterial populations were noted only in the fish body muscle. The PPD125/87(pBFP2) population in the fish decreased after 5 d. The number of PPD130/91(pGFPuv) also decreased in the fish organs, except for continued high growth in the body muscle. Histology revealed necrosis of the tissue (body muscle and liver) and fluorescent bacteria in fish that were infected with PPD130/91(pGFPuv) but not with PPD125/87(pBFP2). This study showed that fluorescent proteins are a useful tool for investigating bacterial host cell infection, and information elucidated here sheds new light on the interactions between E. tarda and its hosts.


Infection and Immunity | 2001

Opsonized Virulent Edwardsiella tarda Strains Are Able To Adhere to and Survive and Replicate within Fish Phagocytes but Fail To Stimulate Reactive Oxygen Intermediates

Putanae S. Srinivasa Rao; Tit Meng Lim; Ka Yin Leung

ABSTRACT Edwardsiella tarda is responsible for hemorrhagic septicemia (edwardsiellosis) in fish and also causes diseases in higher vertebrates such as birds, reptiles, and mammals, including humans. Interactions of E. tarda with blue gourami phagocytes were studied by light microscopy as well as by adherence, intracellular replication, and superoxide anion assays. Both nonopsonized virulent (PPD130/91 and AL9379) and avirulent (PPD125/87 and PPD76/87) bacteria could adhere to and survive and replicate within phagocytes, while only opsonized virulent strains replicated within the phagocytes. Furthermore, only avirulent E. tarda elicited a higher rate of production of reactive oxygen intermediates (ROIs) by phagocytes, indicating that they were unable to avoid and/or resist reactive oxygen radical-based killing by the fish phagocytes. TnphoA transposon mutagenesis was used to construct a library of 200 alkaline phosphatase (PhoA+) fusion mutants from a total of 182,000 transconjugants derived from E. tarda PPD130/91. Five of these mutants induced more ROI production in phagocytes than the wild-type strain. Two mutants had lower replication ability inside phagocytes and moderately higher 50% lethal dose values than the wild-type strain. Sequence analysis revealed that three of these mutants had insertions at sequences having homology to PhoS, dipeptidase, and a surface polymer ligase of lipid A core proteins of other pathogens. These three independent mutations might have changed the cell surface characteristics of the bacteria, which in turn induced phagocytes to produce increased ROIs. Sequences from two other mutants had no homology to known genes, indicating that they may be novel genes for antiphagocytic killing. The present study showed that there are differences in the interactions of virulent and avirulent E. tarda organisms with fish phagocytes and PhoA+ fusion mutants that could be used successfully to identify virulence genes. The information elucidated here would help in the development of suitable strategies to combat the disease caused byE. tarda.


Infection and Immunity | 2004

A Type III Secretion System Is Required for Aeromonas hydrophila AH-1 Pathogenesis

Hong Bing Yu; P. S. Srinivasa Rao; H. C. Lee; Silvia Vilches; Susana Merino; Juan M. Tomás; Ka Yin Leung

ABSTRACT Aeromonas hydrophila is a gram-negative opportunistic pathogen in fish and humans. Many bacterial pathogens of animals and plants have been shown to inject anti-host virulence determinants into the hosts via a type III secretion system (TTSS). Degenerate primers based on lcrD family genes that are present in every known TTSS allowed us to locate the TTSS gene cluster in A. hydrophila AH-1. A series of genome walking steps helped in the identification of 25 open reading frames that encode proteins homologous to those in TTSSs in other bacteria. PCR-based analysis showed the presence of lcrD homologs (ascV) in all of the 33 strains of A. hydrophila isolated from various sources. Insertional inactivation of two of the TTSS genes (aopB and aopD) led to decreased cytotoxicity in carp epithelial cells, increased phagocytosis, and reduced virulence in blue gourami. These results show that a TTSS is required for A. hydrophila pathogenesis. This is the first report of sequencing and characterization of TTSS gene clusters from A. hydrophila. The TTSS identified here may help in developing suitable vaccines as well as in further understanding of the pathogenesis of A. hydrophila.


Microbes and Infection | 2012

Edwardsiella tarda – Virulence mechanisms of an emerging gastroenteritis pathogen

Ka Yin Leung; Bupe A. Siame; Byron J. Tenkink; Rebecca J. Noort; Yu-Keung Mok

Human Edwardsiella tarda infections often manifest as gastroenteritis, but can become systemic and potentially lethal. E. tarda uses virulence factors that include type III and type VI secretion systems, quorum sensing, two-component systems, and exoenzymes to gain entry into and survive within the host. Better understanding of interactions between these factors will lead to the development of novel antimicrobials against E. tarda and other enterics.


Infection and Immunity | 2003

Functional Genomics Approach to the Identification of Virulence Genes Involved in Edwardsiella tarda Pathogenesis

Putanae S. Srinivasa Rao; Tit Meng Lim; Ka Yin Leung

ABSTRACT Edwardsiella tarda is an important cause of hemorrhagic septicemia in fish and also of gastro- and extraintestinal infections in humans. Here, we report the identification of 14 virulence genes of pathogenic E. tarda that are essential for disseminated infection, via a genome-wide analysis. We screened 490 alkaline phosphatase fusion mutants from a library of 450,000 TnphoA transconjugants derived from strain PPD130/91, using fish as an infection model. Compared to the wild type, 15 mutants showed significant decreases in virulence. Six mutants had insertions in the known virulence-related genes, namely, fimA, gadB, katB, pstS, pstC, and ssrB. Some mutants corresponded to known genes (astA, isor, and ompS2) that had not been previously shown to be involved in pathogenesis, and three had insertions in two novel genes. In vivo infection kinetics experiments confirmed the inability of these attenuated mutants to proliferate and cause fatal infection in fish. Screening for the presence of the above-described virulence genes in six virulent and seven avirulent strains of E. tarda indicated that seven of the genes were specific to pathogenic E. tarda. The genes identified here may be used to develop vaccines and diagnostic kits as well as for further studying the pathogenesis of E. tarda and other pathogenic bacteria.


Microbiology | 2000

Molecular analysis of genetic differences between virulent and avirulent strains of Aeromonas hydrophila isolated from diseased fish.

Y. L. Zhang; C. T. Ong; Ka Yin Leung

Aeromonas hydrophila, a normal inhabitant of aquatic environments, is an opportunistic pathogen of a variety of aquatic and terrestrial animals, including humans. A. hydrophila PPD134/91 is defined as virulent whereas PPD35/85 is defined as avirulent on the basis of their different LD50 values in fish. Suppression subtractive hybridization (SSH) was used to identify genetic differences between these two strains. Sixty-nine genomic regions of differences were absent in PPD35/85, and the DNA sequences of these regions were determined. Sixteen ORFs encoded by 23 fragments showed high homology to known proteins of other bacteria. ORFs encoded by the remaining 46 fragments were identified as new proteins of A. hydrophila, showing no significant homology to any known proteins. Among these PPD134/91-specific genes, 22 DNA fragments (21 ORFs) were present in most of the eight virulent strains studied but mostly absent in the seven avirulent strains, suggesting that they are universal virulence genes in A. hydrophila. The PPD134/91-specific genes included five known virulence factors of A. hydrophila: haemolysin (hlyA), protease (oligopeptidase A), outer-membrane protein (Omp), multidrug-resistance protein and histone-like protein (HU-2). Another 47 DNA fragments (44 ORFs) were mainly present in PPD134/91, indicating the heterogeneity among motile aeromonads. Some of these fragments encoded virulence determinants. These included genes for the synthesis of O-antigen and type II restriction/modification system. The results indicated that SSH is successful in identifying genetic differences and virulence genes among different strains of A. hydrophila.


Applied and Environmental Microbiology | 2005

Identification and characterization of Putative Virulence genes and gene clusters in Aeromonas Hydrophila PPD134/91

H. B. Yu; Y. L. Zhang; Yee Ling Lau; F. Yao; Silvia Vilches; Susana Merino; Juan M. Tomás; S. P. Howard; Ka Yin Leung

ABSTRACT Aeromonas hydrophila is a gram-negative opportunistic pathogen of animals and humans. The pathogenesis of A. hydrophila is multifactorial. Genomic subtraction and markers of genomic islands (GIs) were used to identify putative virulence genes in A. hydrophila PPD134/91. Two rounds of genomic subtraction led to the identification of 22 unique DNA fragments encoding 19 putative virulence factors and seven new open reading frames, which are commonly present in the eight virulence strains examined. In addition, four GIs were found, including O-antigen, capsule, phage-associated, and type III secretion system (TTSS) gene clusters. These putative virulence genes and gene clusters were positioned on a physical map of A. hydrophila PPD134/91 to determine their genetic organization in this bacterium. Further in vivo study of insertion and deletion mutants showed that the TTSS may be one of the important virulence factors in A. hydrophila pathogenesis. Furthermore, deletions of multiple virulence factors such as S-layer, serine protease, and metalloprotease also increased the 50% lethal dose to the same level as the TTSS mutation (about 1 log) in a blue gourami infection model. This observation sheds light on the multifactorial and concerted nature of pathogenicity in A. hydrophila. The large number of putative virulence genes identified in this study will form the basis for further investigation of this emerging pathogen and help to develop effective vaccines, diagnostics, and novel therapeutics.


Infection and Immunity | 2002

Comparative Proteomic Analysis of Extracellular Proteins of Edwardsiella tarda

Y. P. Tan; Qingsong Lin; X. H. Wang; Shashikant B. Joshi; Choy Leong Hew; Ka Yin Leung

ABSTRACT A comparison of extracellular proteins of virulent and avirulent Edwardsiella tarda strains revealed several major, virulent-strain-specific proteins. Proteomic analysis identified two of the proteins in the virulent strain PPD130/91 as flagellin and SseB, which are virulence factors in bacterial pathogens. PCR amplification and DNA sequencing confirmed the presence of the genes that encode these proteins. Our results clearly demonstrated the potency of the proteomic approach in identifying virulence factors.

Collaboration


Dive into the Ka Yin Leung's collaboration.

Top Co-Authors

Avatar

Yu-Keung Mok

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

J. Sivaraman

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Hong Bing Yu

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

X. H. Wang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Jun Zheng

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Mo Li

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Tit Meng Lim

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Chacko Jobichen

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Yih Wan Tan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Ilan Rosenshine

Hebrew University of Jerusalem

View shared research outputs
Researchain Logo
Decentralizing Knowledge