Kabindra Adhikari
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kabindra Adhikari.
PLOS ONE | 2014
Kabindra Adhikari; Alfred E. Hartemink; Budiman Minasny; Rania Bou Kheir; Mette B. Greve; Mogens Humlekrog Greve
Estimation of carbon contents and stocks are important for carbon sequestration, greenhouse gas emissions and national carbon balance inventories. For Denmark, we modeled the vertical distribution of soil organic carbon (SOC) and bulk density, and mapped its spatial distribution at five standard soil depth intervals (0−5, 5−15, 15−30, 30−60 and 60−100 cm) using 18 environmental variables as predictors. SOC distribution was influenced by precipitation, land use, soil type, wetland, elevation, wetness index, and multi-resolution index of valley bottom flatness. The highest average SOC content of 20 g kg−1 was reported for 0−5 cm soil, whereas there was on average 2.2 g SOC kg−1 at 60−100 cm depth. For SOC and bulk density prediction precision decreased with soil depth, and a standard error of 2.8 g kg−1 was found at 60−100 cm soil depth. Average SOC stock for 0−30 cm was 72 t ha−1 and in the top 1 m there was 120 t SOC ha−1. In total, the soils stored approximately 570 Tg C within the top 1 m. The soils under agriculture had the highest amount of carbon (444 Tg) followed by forest and semi-natural vegetation that contributed 11% of the total SOC stock. More than 60% of the total SOC stock was present in Podzols and Luvisols. Compared to previous estimates, our approach is more reliable as we adopted a robust quantification technique and mapped the spatial distribution of SOC stock and prediction uncertainty. The estimation was validated using common statistical indices and the data and high-resolution maps could be used for future soil carbon assessment and inventories.
PLOS ONE | 2015
Yi Peng; Xiong Xiong; Kabindra Adhikari; Maria Knadel; Sabine Grunwald; Mogens Humlekrog Greve
There is a great challenge in combining soil proximal spectra and remote sensing spectra to improve the accuracy of soil organic carbon (SOC) models. This is primarily because mixing of spectral data from different sources and technologies to improve soil models is still in its infancy. The first objective of this study was to integrate information of SOC derived from visible near-infrared reflectance (Vis-NIR) spectra in the laboratory with remote sensing (RS) images to improve predictions of topsoil SOC in the Skjern river catchment, Denmark. The second objective was to improve SOC prediction results by separately modeling uplands and wetlands. A total of 328 topsoil samples were collected and analyzed for SOC. Satellite Pour l’Observation de la Terre (SPOT5), Landsat Data Continuity Mission (Landsat 8) images, laboratory Vis-NIR and other ancillary environmental data including terrain parameters and soil maps were compiled to predict topsoil SOC using Cubist regression and Bayesian kriging. The results showed that the model developed from RS data, ancillary environmental data and laboratory spectral data yielded a lower root mean square error (RMSE) (2.8%) and higher R2 (0.59) than the model developed from only RS data and ancillary environmental data (RMSE: 3.6%, R2: 0.46). Plant-available water (PAW) was the most important predictor for all the models because of its close relationship with soil organic matter content. Moreover, vegetation indices, such as the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), were very important predictors in SOC spatial models. Furthermore, the ‘upland model’ was able to more accurately predict SOC compared with the ‘upland & wetland model’. However, the separately calibrated ‘upland and wetland model’ did not improve the prediction accuracy for wetland sites, since it was not possible to adequately discriminate the vegetation in the RS summer images. We conclude that laboratory Vis-NIR spectroscopy adds critical information that significantly improves the prediction accuracy of SOC compared to using RS data alone. We recommend the incorporation of laboratory spectra with RS data and other environmental data to improve soil spatial modeling and digital soil mapping (DSM).
Soil Science | 2013
Kabindra Adhikari; Rania Bou Kheir; Mette B. Greve; Mogens Humlekrog Greve
Abstract Information on the spatial variability of soil texture including soil clay content in a landscape is very important for agricultural and environmental use. Different prediction techniques are available to assess and map spatial variability of soil properties, but selecting the most suitable technique at a given site has always been a major issue in all soil mapping applications. We studied the prediction performance of ordinary kriging (OK), stratified OK (OKst), regression trees (RT), and rule-based regression kriging (RKrr) for digital mapping of soil clay content at 30.4-m grid size using 6,919 topsoil (0–20 cm) samples in an approximately 7,100 km2 representative area in Denmark. Eighty percent of the data were used for model calibration and the rest for validation. Twelve derivatives extracted from the digital elevation model, together with the information derived from the maps of landscape types, land use, geology, soil types, and georegions, were used as predictors in RT and RKrr modeling. Existing landscape classes were considered for stratification in OKst, and variograms were used to study the spatial autocorrelation. Predicting ability of the models was assessed with R2, RMSE, and residual prediction deviation (RPD) for comparison. Among all the prediction methods, the highest R2 (i.e., 0.74) and lowest RMSE (i.e., 0.28) were associated with the RKrr model, which also had an RPD value of 2.2, confirming RKrr as the best prediction method. Stratification of samples slightly improved the prediction in OKst compared with that in OK, whereas RT showed the lowest performance of all (R2 = 0.52; RMSE = 0.52; and RPD = 1.17). We found RKrr to be an effective prediction method and recommend this method for any future soil mapping activities in Denmark.
GeoResJ | 2017
Dominique Arrouays; J.G.B. Leenaars; Anne C. Richer-de-Forges; Kabindra Adhikari; Cristiano Ballabio; Mogens Humlekrog Greve; Mike Grundy; Eliseo Guerrero; Jon Hempel; Tomislav Hengl; Gerard B. M. Heuvelink; N.H. Batjes; Eloi Carvalho; Alfred E. Hartemink; Alan Hewitt; Suk-Young Hong; Pavel Krasilnikov; Philippe Lagacherie; Glen Lelyk; Zamir Libohova; Allan Lilly; Alex B. McBratney; Neil McKenzie; Gustavo M. Vasquez; V.L. Mulder; Budiman Minasny; Luca Montanarella; Inakwu Odeh; José Padarian; Laura Poggio
Legacy soil data have been produced over 70 years in nearly all countries of the world. Unfortunately, data, information and knowledge are still currently fragmented and at risk of getting lost if they remain in a paper format. To process this legacy data into consistent, spatially explicit and continuous global soil information, data are being rescued and compiled into databases. Thousands of soil survey reports and maps have been scanned and made available online. The soil profile data reported by these data sources have been captured and compiled into databases. The total number of soil profiles rescued in the selected countries is about 800,000. Currently, data for 117, 000 profiles are compiled and harmonized according to GlobalSoilMap specifications in a world level database (WoSIS). The results presented at the country level are likely to be an underestimate. The majority of soil data is still not rescued and this effort should be pursued. The data have been used to produce soil property maps. We discuss the pro and cons of top-down and bottom-up approaches to produce such maps and we stress their complementarity. We give examples of success stories. The first global soil property maps using rescued data were produced by a top-down approach and were released at a limited resolution of 1km in 2014, followed by an update at a resolution of 250m in 2017. By the end of 2020, we aim to deliver the first worldwide product that fully meets the GlobalSoilMap specifications.
Remote Sensing | 2016
Yi Peng; Rania Bou Kheir; Kabindra Adhikari; Radosław Malinowski; Mette B. Greve; Maria Knadel; Mogens Humlekrog Greve
After decades of mining and industrialization in Qatar, it is important to estimate their impact on soil pollution with toxic metals. The study utilized 300 topsoil (0–30 cm) samples, multi-spectral images (Landsat 8), spectral indices and environmental variables to model and map the spatial distribution of arsenic (As), chromium (Cr), nickel (Ni), copper (Cu), lead (Pb) and zinc (Zn) in Qatari soils. The prediction model used condition-based rules generated in the Cubist tool. In terms of R2 and the ratio of performance to interquartile distance (RPIQ), the models showed good predictive capabilities for all elements. Of all of the prediction results, Cu had the highest R2 = 0.74, followed by As > Pb > Cr > Zn > Ni. This study found that all of the models only chose images from January and February as predictors, which indicates that images from these two months are important for soil toxic metals’ monitoring in arid soils, due to the climate and the vegetation cover during this season. Topsoil maps of the six toxic metals were generated. The maps can be used to prioritize the choice of remediation measures and can be applied to other arid areas of similar environmental/socio-economic conditions and pollution causes.
Archive | 2016
Kabindra Adhikari; Alfred E. Hartemink; Budiman Minasny
We measured and mapped the spatial distribution of Al, Si, Fe, Mn, Ca, pH, soil moisture content (θ), and color of a soil profile wall of a Typic Udipsamments. A 10 × 10 cm grid was laid on the soil profile wall, and 70 soil samples were collected from the grid centers. The spatial distribution of these properties was mapped with block kriging. The kriged values of the elements and red color were used in k-means clustering to identify soil horizons. Variation in the profile was considerable, but we observed that Fe, Mn, Ca, pH, and θ decreased with soil depth, while red color increased. The concentration of Al and Si increased at depth between 30 and 60 cm from the soil surface. The k-means clustering was able to locate three soil horizons in the profile, which was comparable to the standard soil profile description. We found that pXRF and soil color index coupled with clustering could be useful in digital soil morphometrics for the identification of soil horizons.
Geoderma | 2016
Kabindra Adhikari; Alfred E. Hartemink
Soil Science Society of America Journal | 2013
Kabindra Adhikari; Rania Bou Kheir; Mette B. Greve; Peder Klith Bøcher; Brendan P. Malone; Budiman Minasny; Alex B. McBratney; Mogens Humlekrog Greve
Geoderma | 2014
Kabindra Adhikari; Budiman Minasny; Mette B. Greve; Mogens Humlekrog Greve
Geoderma | 2016
Benito R. Bonfatti; Alfred E. Hartemink; Elvio Giasson; Carlos Gustavo Tornquist; Kabindra Adhikari