Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kae Akita is active.

Publication


Featured researches published by Kae Akita.


Nature Communications | 2013

A Munc13-like protein in Arabidopsis mediates H+-ATPase translocation that is essential for stomatal responses

Mimi Hashimoto-Sugimoto; Takumi Higaki; Takashi Yaeno; Ayako Nagami; Mari Irie; Miho Fujimi; Megumi Miyamoto; Kae Akita; Juntaro Negi; Ken Shirasu; Seiichiro Hasezawa; Koh Iba

Plants control CO2 uptake and water loss by modulating the aperture of stomata located in the epidermis. Stomatal opening is initiated by the activation of H+-ATPases in the guard-cell plasma membrane. In contrast to regulation of H+-ATPase activity, little is known about the translocation of the guard cell H+-ATPase to the plasma membrane. Here we describe the isolation of an Arabidopsis gene, PATROL1, that controls the translocation of a major H+-ATPase, AHA1, to the plasma membrane. PATROL1 encodes a protein with a MUN domain, known to mediate synaptic priming in neuronal exocytosis in animals. Environmental stimuli change the localization of plasma membrane-associated PATROL1 to an intracellular compartment. Plasma membrane localization of AHA1 and stomatal opening require the association of PATROL1 with AHA1. Increased stomatal opening responses in plants overexpressing PATROL1 enhance the CO2 assimilation rate, promoting plant growth.


Scientific Reports | 2012

Statistical organelle dissection of Arabidopsis guard cells using image database LIPS

Takumi Higaki; Natsumaro Kutsuna; Yoichiroh Hosokawa; Kae Akita; Kazuo Ebine; Takashi Ueda; Noriaki Kondo; Seiichiro Hasezawa

To comprehensively grasp cell biological events in plant stomatal movement, we have captured microscopic images of guard cells with various organelles markers. The 28,530 serial optical sections of 930 pairs of Arabidopsis guard cells have been released as a new image database, named Live Images of Plant Stomata (LIPS). We visualized the average organellar distributions in guard cells using probabilistic mapping and image clustering techniques. The results indicated that actin microfilaments and endoplasmic reticulum (ER) are mainly localized to the dorsal side and connection regions of guard cells. Subtractive images of open and closed stomata showed distribution changes in intracellular structures, including the ER, during stomatal movement. Time-lapse imaging showed that similar ER distribution changes occurred during stomatal opening induced by light irradiation or femtosecond laser shots on neighboring epidermal cells, indicating that our image analysis approach has identified a novel ER relocation in stomatal opening.


PLOS ONE | 2012

Radionuclide Analysis on Bamboos following the Fukushima Nuclear Accident

Takumi Higaki; Shogo Higaki; Masahiro Hirota; Kae Akita; Seiichiro Hasezawa

In response to contamination from the recent Fukushima nuclear accident, we conducted radionuclide analysis on bamboos sampled from six sites within a 25 to 980 km radius of the Fukushima Daiichi nuclear power plant. Maximum activity concentrations of radiocesium 134Cs and 137Cs in samples from Fukushima city, 65 km away from the Fukushima Daiichi plant, were in excess of 71 and 79 kBq/kg, dry weight (DW), respectively. In Kashiwa city, 195 km away from the Fukushima Daiichi, the sample concentrations were in excess of 3.4 and 4.3 kBq/kg DW, respectively. In Toyohashi city, 440 km away from the Fukushima Daiichi, the concentrations were below the measurable limits of up to 4.5 Bq/kg DW. In the radiocesium contaminated samples, the radiocesium activity was higher in mature and fallen leaves than in young leaves, branches and culms.


Plant and Cell Physiology | 2014

Dynamics and environmental responses of PATROL1 in arabidopsis subsidiary cells

Takumi Higaki; Mimi Hashimoto-Sugimoto; Kae Akita; Koh Iba; Seiichiro Hasezawa

The Arabidopsis stomatal complex is composed of a pair of guard cells and surrounding anisocytic subsidiary cells. Subsidiary cells are thought to function as a supplier and receiver of bulk water and ions, and to assist turgor-driven stomatal movement, but the molecular mechanisms are largely unknown. In this work, we studied the dynamic behavior and environmental responses of PATROL1, which has been identified as a translocation factor of the plasma membrane proton pump ATPase (PM H(+)-ATPase) AHA1 in guard cells and subsidiary cells in Arabidopsis thaliana. Variable-angle epifluorescence microscopic observation revealed that green fluorescent protein (GFP)-PATROL1 localized on dot-like compartments that resided on plasma membranes for several seconds. The GFP-PATROL1-labeled dots were sensitive to phosphatidylinositol 4-kinase inhibitors but not to a phosphatidylinositol 3-kinase inhibitor. GFP-PATROL1 and red fluorescent protein (RFP)-AHA1 co-localized in hyperosmotic conditions, and a mutation of PATROL1 resulted in an increase in GFP-AHA1 internalization, suggesting a role in the translocation of PM H(+)-ATPase in subsidiary cells. Interestingly, subsidiary cells showed changes in localization of GFP-PATROL1 in response to environmental stimuli that were opposite to those in guard cells. Our observations suggested that PATROL1 may contribute to stomatal movement by translocations of PM H(+)-ATPase in subsidiary cells.


PLOS ONE | 2013

Breaking of plant stomatal one-cell-spacing rule by sugar solution immersion.

Kae Akita; Seiichiro Hasezawa; Takumi Higaki

The spatial distribution of plant stomata is a model system to study epidermal cell pattern formation. Molecular genetic approaches have identified several key genes required for stomatal distribution patterning, but environmental conditions that perturb the stomatal spacing distribution have not yet been identified. We found that immersing hydroponic cultures in 1–5% sucrose solution induced abnormally clustered stomata in the cotyledons of Arabidopsis seedlings. Clustered stomata were also induced by treatment with glucose or fructose solution but not by mannitol solution, suggesting that osmotic stress was not a cause of the disturbed stomatal patterns. Stomatal lineage cell-specific enhancer trap lines revealed that the sugar solution treatment led to ectopic expression of stomatal lineage cell-specific genes in non-stomatal lineage cells. Aniline blue staining also showed that there was reduced deposition of callose, a plant cell wall component, in new cell walls during formation of stomatal precursor cells (meristemoids). These results suggested that the immersion treatment with sugar solution permitted ectopic guard cell differentiation through dysfunction of the cell wall dividing stomatal- and non-stomatal lineage cells. Our simple induction system for clustered stomata provides a suitable tool for further studies to investigate the one-cell-spacing rule during plant stomatal development.


PLOS Computational Biology | 2016

A Theoretical Model of Jigsaw-Puzzle Pattern Formation by Plant Leaf Epidermal Cells

Takumi Higaki; Natsumaro Kutsuna; Kae Akita; Hisako Takigawa-Imamura; Kenji Yoshimura; Takashi Miura

Plant leaf epidermal cells exhibit a jigsaw puzzle–like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo.


Plant and Cell Physiology | 2016

Exogenous Cellulase Switches Cell Interdigitation to Cell Elongation in an RIC1-dependent Manner in Arabidopsis thaliana Cotyledon Pavement Cells

Takumi Higaki; Hisako Takigawa-Imamura; Kae Akita; Natsumaro Kutsuna; Ryo Kobayashi; Seiichiro Hasezawa; Takashi Miura

Pavement cells in cotyledons and true leaves exhibit a jigsaw puzzle-like morphology in most dicotyledonous plants. Among the molecular mechanisms mediating cell morphogenesis, two antagonistic Rho-like GTPases regulate local cell outgrowth via cytoskeletal rearrangements. Analyses of several cell wall-related mutants suggest the importance of cell wall mechanics in the formation of interdigitated patterns. However, how these factors are integrated is unknown. In this study, we observed that the application of exogenous cellulase to hydroponically grown Arabidopsis thaliana cotyledons switched the interdigitation of pavement cells to the production of smoothly elongated cells. The cellulase-induced inhibition of cell interdigitation was not observed in a RIC1 knockout mutant. This gene encodes a Rho-like GTPase-interacting protein important for localized cell growth suppression via microtubule bundling on concave cell interfaces. Additionally, to characterize pavement cell morphologies, we developed a mathematical model that considers the balance between cell and cell wall growth, restricted global cell growth orientation, and regulation of local cell outgrowth mediated by a Rho-like GTPase–cytoskeleton system. Our computational simulations fully support our experimental observations, and suggest that interdigitated patterns form because of mechanical buckling in the absence of Rho-like GTPase-dependent regulation of local cell outgrowth. Our model clarifies the cell wall mechanics influencing pavement cell morphogenesis.


Plant Signaling & Behavior | 2015

Quantitative analysis of microtubule orientation in interdigitated leaf pavement cells

Kae Akita; Takumi Higaki; Natsumaro Kutsuna; Seiichiro Hasezawa

Leaf pavement cells are shaped like a jigsaw puzzle in most dicotyledon species. Molecular genetic studies have identified several genes required for pavement cells morphogenesis and proposed that microtubules play crucial roles in the interdigitation of pavement cells. In this study, we performed quantitative analysis of cortical microtubule orientation in leaf pavement cells in Arabidopsis thaliana. We captured confocal images of cortical microtubules in cotyledon leaf epidermis expressing GFP-tubulinβ and quantitatively evaluated the microtubule orientations relative to the pavement cell growth axis using original image processing techniques. Our results showed that microtubules kept parallel orientations to the growth axis during pavement cell growth. In addition, we showed that immersion treatment of seed cotyledons in solutions containing tubulin polymerization and depolymerization inhibitors decreased pavement cell complexity. Treatment with oryzalin and colchicine inhibited the symmetric division of guard mother cells.


Protoplasma | 2017

Cell wall accumulation of fluorescent proteins derived from a trans-Golgi cisternal membrane marker and paramural bodies in interdigitated Arabidopsis leaf epidermal cells

Kae Akita; Megumi Kobayashi; Mayuko Sato; Natsumaro Kutsuna; Takashi Ueda; Kiminori Toyooka; Noriko Nagata; Seiichiro Hasezawa; Takumi Higaki

In most dicotyledonous plants, leaf epidermal pavement cells develop jigsaw puzzle-like shapes during cell expansion. The rapid growth and complicated cell shape of pavement cells is suggested to be achieved by targeted exocytosis that is coordinated with cytoskeletal rearrangement to provide plasma membrane and/or cell wall materials for lobe development during their morphogenesis. Therefore, visualization of membrane trafficking in leaf pavement cells should contribute an understanding of the mechanism of plant cell morphogenesis. To reveal membrane trafficking in pavement cells, we observed monomeric red fluorescent protein-tagged rat sialyl transferases, which are markers of trans-Golgi cisternal membranes, in the leaf epidermis of Arabidopsis thaliana. Quantitative fluorescence imaging techniques and immunoelectron microscopic observations revealed that accumulation of the red fluorescent protein occurred mostly in the curved regions of pavement cell borders and guard cell ends during leaf expansion. Transmission electron microscopy observations revealed that apoplastic vesicular membrane structures called paramural bodies were more frequent beneath the curved cell wall regions of interdigitated pavement cells and guard cell ends in young leaf epidermis. In addition, pharmacological studies showed that perturbations in membrane trafficking resulted in simple cell shapes. These results suggested possible heterogeneity of the curved regions of plasma membranes, implying a relationship with pavement cell morphogenesis.


Scientific Reports | 2015

Semi-automatic organelle detection on transmission electron microscopic images

Takumi Higaki; Natsumaro Kutsuna; Kae Akita; Mayuko Sato; Fumie Sawaki; Megumi Kobayashi; Noriko Nagata; Kiminori Toyooka; Seiichiro Hasezawa

Recent advances in the acquisition of large-scale datasets of transmission electron microscope images have allowed researchers to determine the number and the distribution of subcellular ultrastructures at both the cellular level and the tissue level. For this purpose, it would be very useful to have a computer-assisted system to detect the structures of interest, such as organelles. Using our original image recognition framework CARTA (Clustering-Aided Rapid Training Agent), combined with procedures to highlight and enlarge regions of interest on the image, we have developed a successful method for the semi-automatic detection of plant organelles including mitochondria, amyloplasts, chloroplasts, etioplasts, and Golgi stacks in transmission electron microscope images. Our proposed semi-automatic detection system will be helpful for labelling organelles in the interpretation and/or quantitative analysis of large-scale electron microscope imaging data.

Collaboration


Dive into the Kae Akita's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kiminori Toyooka

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noriko Nagata

Japan Women's University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge