Kae Won Cho
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kae Won Cho.
Diabetes | 2009
David L. Morris; Kae Won Cho; Yingjiang Zhou; Liangyou Rui
OBJECTIVE SH2B1 is a SH2 domain-containing adaptor protein expressed in both the central nervous system and peripheral tissues. Neuronal SH2B1 controls body weight; however, the functions of peripheral SH2B1 remain unknown. Here, we studied peripheral SH2B1 regulation of insulin sensitivity and glucose metabolism. RESEARCH DESIGN AND METHODS We generated TgKO mice expressing SH2B1 in the brain but not peripheral tissues. Various metabolic parameters and insulin signaling were examined in TgKO mice fed a high-fat diet (HFD). The effect of SH2B1 on the insulin receptor catalytic activity and insulin receptor substrate (IRS)-1/IRS-2 dephosphorylation was examined using in vitro kinase assays and in vitro dephosphorylation assays, respectively. SH2B1 was coexpressed with PTP1B, and insulin receptor–mediated phosphorylation of IRS-1 was examined. RESULTS Deletion of peripheral SH2B1 markedly exacerbated HFD-induced hyperglycemia, hyperinsulinemia, and glucose intolerance in TgKO mice. Insulin signaling was dramatically impaired in muscle, liver, and adipose tissue in TgKO mice. Deletion of SH2B1 impaired insulin signaling in primary hepatocytes, whereas SH2B1 overexpression stimulated insulin receptor autophosphorylation and tyrosine phosphorylation of IRSs. Purified SH2B1 stimulated insulin receptor catalytic activity in vitro. The SH2 domain of SH2B1 was both required and sufficient to promote insulin receptor activation. Insulin stimulated the binding of SH2B1 to IRS-1 or IRS-2. This physical interaction inhibited tyrosine dephosphorylation of IRS-1 or IRS-2 and increased the ability of IRS proteins to activate the phosphatidylinositol 3-kinase pathway. CONCLUSIONS SH2B1 is an endogenous insulin sensitizer. It directly binds to insulin receptors, IRS-1 and IRS-2, and enhances insulin sensitivity by promoting insulin receptor catalytic activity and by inhibiting tyrosine dephosphorylation of IRS proteins.
Cell Metabolism | 2010
Wei Song; Decheng Ren; Wen-Jun Li; Lin Jiang; Kae Won Cho; Ping Huang; Chen Fan; Yiyun Song; Yong(刘勇) Liu; Liangyou Rui
SH2B1 is a key regulator of body weight in mammals. Here, we identified dSH2B as the Drosophila homolog of SH2B1. dSH2B bound to Chico and directly promoted insulin-like signaling. Disruption of dSH2B decreased insulin-like signaling and somatic growth in flies. dSH2B deficiency also increased hemolymph carbohydrate levels, whole-body lipid levels, life span, and resistance to starvation and oxidative stress. Systemic overexpression of dSH2B resulted in opposite phenotypes. dSH2B overexpression in fat body decreased lipid and glucose levels, whereas neuron-specific overexpression of dSH2B decreased oxidative resistance and life span. Genetic deletion of SH2B1 also resulted in growth retardation, obesity, and type 2 diabetes in mice; surprisingly, life span and oxidative resistance were reduced in SH2B1 null mice. These data suggest that dSH2B regulation of insulin-like signaling, growth, and metabolism is conserved in SH2B1, whereas dSH2B regulation of oxidative stress and longevity may be conserved in other SH2B family members.
Molecular metabolism | 2014
Kanakadurga Singer; Jennifer B. DelProposto; David L. Morris; Brian F. Zamarron; Taleen Mergian; Nidhi Maley; Kae Won Cho; Lynn Geletka; Perla Subbaiah; Lindsey A. Muir; Gabriel Martinez-Santibanez
Obesity is associated with an activated macrophage phenotype in multiple tissues that contributes to tissue inflammation and metabolic disease. To evaluate the mechanisms by which obesity potentiates myeloid activation, we evaluated the hypothesis that obesity activates myeloid cell production from bone marrow progenitors to potentiate inflammatory responses in metabolic tissues. High fat diet-induced obesity generated both quantitative increases in myeloid progenitors as well as a potentiation of inflammation in macrophages derived from these progenitors. In vivo, hematopoietic stem cells from obese mice demonstrated the sustained capacity to preferentially generate inflammatory CD11c+ adipose tissue macrophages after serial bone marrow transplantation. We identified that hematopoietic MyD88 was important for the accumulation of CD11c+ adipose tissue macrophage accumulation by regulating the generation of myeloid progenitors from HSCs. These findings demonstrate that obesity and metabolic signals potentiate leukocyte production and that dietary priming of hematopoietic progenitors contributes to adipose tissue inflammation.
PLOS ONE | 2013
Kanakadurga Singer; David L. Morris; Kelsie E. Oatmen; Tianyi Wang; Jennifer B. DelProposto; Taleen Mergian; Kae Won Cho
Neuropeptide Y (NPY) is induced in peripheral tissues such as adipose tissue with obesity. The mechanism and function of NPY induction in fat are unclear. Given the evidence that NPY can modulate inflammation, we examined the hypothesis that NPY regulates the function of adipose tissue macrophages (ATMs) in response to dietary obesity in mice. NPY was induced by dietary obesity in the stromal vascular cells of visceral fat depots from mice. Surprisingly, the induction of Npy was limited to purified ATMs from obese mice. Significant basal production of NPY was observed in cultured bone marrow derived macrophage and dendritic cells (DCs) and was increased with LPS stimulation. In vitro, addition of NPY to myeloid cells had minimal effects on their activation profiles. NPY receptor inhibition promoted DC maturation and the production of IL-6 and TNFα suggesting an anti-inflammatory function for NPY signaling in DCs. Consistent with this, NPY injection into lean mice decreased the quantity of M1-like CD11c+ ATMs and suppressed Ly6chi monocytes. BM chimeras generated from Npy−/− donors demonstrated that hematopoietic NPY contributes to the obesity-induced induction of Npy in fat. In addition, loss of Npy expression from hematopoietic cells led to an increase in CD11c+ ATMs in visceral fat with high fat diet feeding. Overall, our studies suggest that NPY is produced by a range of myeloid cells and that obesity activates the production of NPY in adipose tissue macrophages with autocrine and paracrine effects.
Nature Medicine | 2012
Liang Sheng; Yingjiang Zhou; Zheng Chen; Decheng Ren; Kae Won Cho; Lin Jiang; Hong Shen; Yoshiteru Sasaki; Liangyou Rui
The canonical inhibitor of nuclear factor κB kinase subunit β (IKK-β)–nuclear factor of κ light polypeptide gene enhancer in B cells 1 (NF-κB1) pathway has been well documented to promote insulin resistance; however, the noncanonical NF-κB–inducing kinase (NIK)–NF-κB2 pathway is not well understood in obesity. Additionally, the contribution of counter-regulatory hormones, particularly glucagon, to hyperglycemia in obesity is unclear. Here we show that NIK promotes glucagon responses in obesity. Hepatic NIK was abnormally activated in mice with dietary or genetic obesity. Systemic deletion of Map3k14, encoding NIK, resulted in reduced glucagon responses and hepatic glucose production (HGP). Obesity is associated with high glucagon responses, and liver-specific inhibition of NIK led to lower glucagon responses and HGP and protected against hyperglycemia and glucose intolerance in obese mice. Conversely, hepatocyte-specific overexpression of NIK resulted in higher glucagon responses and HGP. In isolated mouse livers and primary hepatocytes, NIK also promoted glucagon action and glucose production, at least in part by increasing cAMP response element-binding (CREB) stability. Therefore, overactivation of liver NIK in obesity promotes hyperglycemia and glucose intolerance by increasing the hyperglycemic response to glucagon and other factors that activate CREB.
Methods in Enzymology | 2014
Kae Won Cho; David L. Morris
Within adipose tissue, multiple leukocyte interactions contribute to metabolic homeostasis in health as well as to the pathogenesis of insulin resistance with obesity. Adipose tissue macrophages (ATMs) are the predominant leukocyte population in fat and contribute to obesity-induced inflammation. Characterization of ATMs and other leukocytes in the stromal vascular fraction from fat has benefited from the use of flow cytometry and flow-assisted cell sorting techniques. These methods permit the immunophenotyping, quantification, and purification of these unique cell populations from multiple adipose tissue depots in rodents and humans. Proper isolation, quantification, and characterization of ATM phenotypes are critical for understanding their role in adipose tissue function and obesity-induced metabolic diseases. Here, we present the flow cytometry protocols for phenotyping ATMs in lean and obese mice employed by our laboratory.
Endocrinology | 2010
David L. Morris; Kae Won Cho; Liangyou Rui
SH2B1 is an SH2 domain-containing adaptor protein that plays a key role in the regulation of energy and glucose metabolism in both rodents and humans. Genetic deletion of SH2B1 in mice results in obesity and type 2 diabetes. Single-nucleotide polymorphisms in the SH2B1 loci and chromosomal deletions of the SH2B1 loci associate with obesity and insulin resistance in humans. In cultured cells, SH2B1 promotes leptin and insulin signaling by binding via its SH2 domain to phosphorylated tyrosines in Janus kinase 2 and the insulin receptor, respectively. Here we generated three lines of mice to analyze the role of the SH2 domain of SH2B1 in the central nervous system. Transgenic mice expressing wild-type, SH2 domain-defective (R555E), or SH2 domain-alone (DeltaN503) forms of SH2B1 specifically in neurons were crossed with SH2B1 knockout mice to generate KO/SH2B1, KO/R555E, or KO/DeltaN503 compound mutant mice. R555E had a replacement of Arg(555) with Glu within the SH2 domain. DeltaN503 contained an intact SH2 domain but lacked amino acids 1-503. Neuron-specific expression of recombinant SH2B1, but not R555E or DeltaN503, corrected hyperphagia, obesity, glucose intolerance, and insulin resistance in SH2B1 null mice. Neuron-specific expression of R555E in wild-type mice promoted obesity and insulin resistance. These results indicate that in addition to the SH2 domain, N-terminal regions of neuronal SH2B1 are also required for the maintenance of normal body weight and glucose metabolism. Additionally, mutations in the SH2 domain of SH2B1 may increase the susceptibility to obesity and type 2 diabetes in a dominant-negative manner.
Journal of Biological Chemistry | 2015
Kanakadurga Singer; Nidhi Maley; Taleen Mergian; Jennifer B. DelProposto; Kae Won Cho; Brian F. Zamarron; Gabriel Martinez-Santibanez; Lynn Geletka; Lindsey A. Muir; Phillip Wachowiak; Chaghig Demirjian
Background: Diet-induced obesity leads to a chronic low grade inflammation with production of activated macrophages associated with systemic sexually dimorphic metabolic dysfunction. Results: Males have enhanced myelopoiesis and a proinflammatory response to obesity compared with females. Conclusion: Sex differences in myelopoiesis result in dimorphic responses to obesity-induced inflammation. Significance: Given differences in inflammatory responses, targeted treatment strategies are probably required for males and females. Women of reproductive age are protected from metabolic disease relative to postmenopausal women and men. Most preclinical rodent studies are skewed toward the use of male mice to study obesity-induced metabolic dysfunction because of a similar protection observed in female mice. How sex differences in obesity-induced inflammatory responses contribute to these observations is unknown. We have compared and contrasted the effects of high fat diet-induced obesity on glucose metabolism and leukocyte activation in multiple depots in male and female C57Bl/6 mice. With both short term and long term high fat diet, male mice demonstrated increased weight gain and CD11c+ adipose tissue macrophage content compared with female mice despite similar degrees of adipocyte hypertrophy. Competitive bone marrow transplant studies demonstrated that obesity induced a preferential contribution of male hematopoietic cells to circulating leukocytes and adipose tissue macrophages compared with female cells independent of the sex of the recipient. Sex differences in macrophage and hematopoietic cell in vitro activation in response to obesogenic cues were observed to explain these results. In summary, this report demonstrates that male and female leukocytes and hematopoietic stem cells have cell-autonomous differences in their response to obesity that contribute to an amplified response in males compared with females.
Journal of Immunology | 2016
Kae Won Cho; Brian F. Zamarron; Lindsey A. Muir; Kanakadurga Singer; Cara Porsche; Jennifer B. DelProposto; Lynn Geletka; Kevin A. Meyer; Robert W. O'Rourke
Dynamic changes of adipose tissue leukocytes, including adipose tissue macrophage (ATM) and adipose tissue dendritic cells (ATDCs), contribute to obesity-induced inflammation and metabolic disease. However, clear discrimination between ATDC and ATM in adipose tissue has limited progress in the field of immunometabolism. In this study, we use CD64 to distinguish ATM and ATDC, and investigated the temporal and functional changes in these myeloid populations during obesity. Flow cytometry and immunostaining demonstrated that the definition of ATM as F4/80+CD11b+ cells overlaps with other leukocytes and that CD45+CD64+ is specific for ATM. The expression of core dendritic cell genes was enriched in CD11c+CD64− cells (ATDC), whereas core macrophage genes were enriched in CD45+CD64+ cells (ATM). CD11c+CD64− ATDCs expressed MHC class II and costimulatory receptors, and had similar capacity to stimulate CD4+ T cell proliferation as ATMs. ATDCs were predominantly CD11b+ conventional dendritic cells and made up the bulk of CD11c+ cells in adipose tissue with moderate high-fat diet exposure. Mixed chimeric experiments with Ccr2−/− mice demonstrated that high-fat diet–induced ATM accumulation from monocytes was dependent on CCR2, whereas ATDC accumulation was less CCR2 dependent. ATDC accumulation during obesity was attenuated in Ccr7−/− mice and was associated with decreased adipose tissue inflammation and insulin resistance. CD45+CD64+ ATM and CD45+CD64−CD11c+ ATDCs were identified in human obese adipose tissue and ATDCs were increased in s.c. adipose tissue compared with omental adipose tissue. These results support a revised strategy for unambiguous delineation of ATM and ATDC, and suggest that ATDCs are independent contributors to adipose tissue inflammation during obesity.
Molecular and Cellular Biology | 2011
Kae Won Cho; Yingjiang Zhou; Liang Sheng; Liangyou Rui
ABSTRACT Insulin sensitivity is impaired in obesity, and insulin resistance is the primary risk factor for type 2 diabetes. Here we show that lipocalin-13 (LCN13), a lipocalin superfamily member, is a novel insulin sensitizer. LCN13 was secreted by multiple cell types. Circulating LCN13 was markedly reduced in mice with obesity and type 2 diabetes. Three distinct approaches were used to increase LCN13 levels: LCN13 transgenic mice, LCN13 adenoviral infection, and recombinant LCN13 administration. Restoration of LCN13 significantly ameliorated hyperglycemia, insulin resistance, and glucose intolerance in mice with obesity. LCN13 enhanced insulin signaling not only in animals but also in cultured adipocytes. Recombinant LCN13 increased the ability of insulin to stimulate glucose uptake in adipocytes and to suppress hepatic glucose production (HGP) in primary hepatocyte cultures. Additionally, LCN13 alone was able to suppress HGP, whereas neutralization of LCN13 increased HGP in primary hepatocyte cultures. These data suggest that LCN13 regulates glucose metabolism by both insulin-dependent and insulin-independent mechanisms. LCN13 and LCN13-related molecules may be used to treat insulin resistance and type 2 diabetes.