Kafui Dzirasa
Duke University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kafui Dzirasa.
The Journal of Neuroscience | 2006
Kafui Dzirasa; Sidarta Ribeiro; Rui M. Costa; Lucas M. Santos; Shih-Chieh Lin; Andres Grosmark; Tatyana D. Sotnikova; Raul R. Gainetdinov; Marc G. Caron; Miguel A. L. Nicolelis
Dopamine depletion is involved in the pathophysiology of Parkinsons disease, whereas hyperdopaminergia may play a fundamental role in generating endophenotypes associated with schizophrenia. Sleep disturbances are known to occur in both schizophrenia and Parkinsons disease, suggesting that dopamine plays a role in regulating the sleep–wake cycle. Here, we show that novelty-exposed hyperdopaminergic mice enter a novel awake state characterized by spectral patterns of hippocampal local field potentials that resemble electrophysiological activity observed during rapid-eye-movement (REM) sleep. Treatment with haloperidol, a D2 dopamine receptor antagonist, reduces this abnormal intrusion of REM-like activity during wakefulness. Conversely, mice acutely depleted of dopamine enter a different novel awake state characterized by spectral patterns of hippocampal local field potentials that resemble electrophysiological activity observed during slow-wave sleep (SWS). This dopamine-depleted state is marked by an apparent suppression of SWS and a complete suppression of REM sleep. Treatment with D2 (but not D1) dopamine receptor agonists recovers REM sleep in these mice. Altogether, these results indicate that dopamine regulates the generation of sleep–wake states. We propose that psychosis and the sleep disturbances experienced by Parkinsonian patients result from dopamine-mediated disturbances of REM sleep.
The Journal of Neuroscience | 2009
Kafui Dzirasa; Amy J. Ramsey; Daniel Yasumasa Takahashi; Jennifer R. Stapleton; Juan M. Potes; Jamila K. Williams; Raul R. Gainetdinov; Koichi Sameshima; Marc G. Caron; Miguel A. L. Nicolelis
Neural phase signaling has gained attention as a putative coding mechanism through which the brain binds the activity of neurons across distributed brain areas to generate thoughts, percepts, and behaviors. Neural phase signaling has been shown to play a role in various cognitive processes, and it has been suggested that altered phase signaling may play a role in mediating the cognitive deficits observed across neuropsychiatric illness. Here, we investigated neural phase signaling in two mouse models of cognitive dysfunction: mice with genetically induced hyperdopaminergia [dopamine transporter knock-out (DAT-KO) mice] and mice with genetically induced NMDA receptor hypofunction [NMDA receptor subunit-1 knockdown (NR1-KD) mice]. Cognitive function in these mice was assessed using a radial-arm maze task, and local field potentials were recorded from dorsal hippocampus and prefrontal cortex as DAT-KO mice, NR1-KD mice, and their littermate controls engaged in behavioral exploration. Our results demonstrate that both DAT-KO and NR1-KD mice display deficits in spatial cognitive performance. Moreover, we show that persistent hyperdopaminergia alters interstructural phase signaling, whereas NMDA receptor hypofunction alters interstructural and intrastructural phase signaling. These results demonstrate that dopamine and NMDA receptor dependent glutamate signaling play a critical role in coordinating neural phase signaling, and encourage further studies to investigate the role that deficits in phase signaling play in mediating cognitive dysfunction.
Nature Communications | 2016
Xiaoming Wang; Alexandra L. Bey; Brittany M. Katz; Alexandra Badea; Nam Soo Kim; Lisa K. David; Lara J. Duffney; Sunil Kumar; Stephen D. Mague; Samuel W. Hulbert; Nisha Dutta; Volodya Y. Hayrapetyan; Chunxiu Yu; Erin Gaidis; Shengli Zhao; Jin Dong Ding; Qiong Xu; Leeyup Chung; Ramona M. Rodriguiz; Fan Wang; Richard J. Weinberg; William C. Wetsel; Kafui Dzirasa; Henry H. Yin; Yong-hui Jiang
Human neuroimaging studies suggest that aberrant neural connectivity underlies behavioural deficits in autism spectrum disorders (ASDs), but the molecular and neural circuit mechanisms underlying ASDs remain elusive. Here, we describe a complete knockout mouse model of the autism-associated Shank3 gene, with a deletion of exons 4–22 (Δe4–22). Both mGluR5-Homer scaffolds and mGluR5-mediated signalling are selectively altered in striatal neurons. These changes are associated with perturbed function at striatal synapses, abnormal brain morphology, aberrant structural connectivity and ASD-like behaviour. In vivo recording reveals that the cortico-striatal-thalamic circuit is tonically hyperactive in mutants, but becomes hypoactive during social behaviour. Manipulation of mGluR5 activity attenuates excessive grooming and instrumental learning differentially, and rescues impaired striatal synaptic plasticity in Δe4–22−/− mice. These findings show that deficiency of Shank3 can impair mGluR5-Homer scaffolding, resulting in cortico-striatal circuit abnormalities that underlie deficits in learning and ASD-like behaviours. These data suggest causal links between genetic, molecular, and circuit mechanisms underlying the pathophysiology of ASDs.
The Journal of Neuroscience | 2010
Kafui Dzirasa; Laurent Coque; Michelle M. Sidor; Sunil Kumar; Elizabeth A. Dancy; Joseph S. Takahashi; Colleen A. McClung; Miguel A. L. Nicolelis
Polymorphisms in circadian genes such as CLOCK convey risk for bipolar disorder. While studies have begun to elucidate the molecular mechanism whereby disruption of Clock alters cellular function within mesolimbic brain regions, little remains known about how these changes alter gross neural circuit function and generate mania-like behaviors in Clock-Δ19 mice. Here we show that the phasic entrainment of nucleus accumbens (NAC) low-gamma (30–55 Hz) oscillations to delta (1–4 Hz) oscillations is negatively correlated with the extent to which wild-type (WT) mice explore a novel environment. Clock-Δ19 mice, which display hyperactivity in the novel environment, exhibit profound deficits in low-gamma and NAC single-neuron phase coupling. We also demonstrate that NAC neurons in Clock-Δ19 mice display complex changes in dendritic morphology and reduced GluR1 expression compared to those observed in WT littermates. Chronic lithium treatment ameliorated several of these neurophysiological deficits and suppressed exploratory drive in the mutants. These results demonstrate that disruptions of Clock gene function are sufficient to promote alterations in NAC microcircuits, and raise the hypothesis that dysfunctional NAC phase signaling may contribute to the mania-like behavioral manifestations that result from diminished circadian gene function.
The Journal of Neuroscience | 2013
Sunil Kumar; Sherilynn J. Black; Rainbo Hultman; Steven T. Szabo; Kristine D. DeMaio; Jeanette Du; Brittany M. Katz; Guoping Feng; Herbert E. Covington; Kafui Dzirasa
Transcranial magnetic stimulation and deep brain stimulation have emerged as therapeutic modalities for treatment refractory depression; however, little remains known regarding the circuitry that mediates the therapeutic effect of these approaches. Here we show that direct optogenetic stimulation of prefrontal cortex (PFC) descending projection neurons in mice engineered to express Chr2 in layer V pyramidal neurons (Thy1–Chr2 mice) models an antidepressant-like effect in mice subjected to a forced-swim test. Furthermore, we show that this PFC stimulation induces a long-lasting suppression of anxiety-like behavior (but not conditioned social avoidance) in socially stressed Thy1–Chr2 mice: an effect that is observed >10 d after the last stimulation. Finally, we use optogenetic stimulation and multicircuit recording techniques concurrently in Thy1–Chr2 mice to demonstrate that activation of cortical projection neurons entrains neural oscillatory activity and drives synchrony across limbic brain areas that regulate affect. Importantly, these neural oscillatory changes directly correlate with the temporally precise activation and suppression of limbic unit activity. Together, our findings show that the direct activation of cortical projection systems is sufficient to modulate activity across networks underlying affective regulation. They also suggest that optogenetic stimulation of cortical projection systems may serve as a viable therapeutic strategy for treating affective disorders.
Nature Communications | 2014
Sunil Kumar; Rainbo Hultman; Dalton Hughes; Nadine Michel; Brittany M. Katz; Kafui Dzirasa
Psychological stress contributes to the onset and exacerbation of nearly all neuropsychiatric disorders. Individual differences in stress-regulatory circuits can therefore dramatically affect vulnerability to these illnesses. Here we identify neural circuit mechanisms underlying individual differences in vulnerability to stress using a murine model of chronic social defeat stress. In chronically stressed mice, we find that the degree of prefrontal cortex (PFC) control of amygdala activity predicts stress-susceptibility in individual mice. Critically, we also find that individual differences in PFC activation (i.e. reactivity) during exposure to an aggressor mouse predict the emergence stress-induced behavioral deficits in stress naïve mice. Finally, we show that naturally occurring differences in PFC reactivity directly correspond to the intrinsic firing rate of PFC neurons. This demonstrates that naturally occurring differences in PFC function underlie individual differences in vulnerability to stress, raising the hypothesis that PFC modulation may prevent stress-induced psychiatric disorders.
The Journal of Neuroscience | 2011
Kafui Dzirasa; DeAnna L. McGarity; Anirban Bhattacharya; Sunil Kumar; Joseph S. Takahashi; David B. Dunson; Colleen A. McClung; Miguel A. L. Nicolelis
Alterations in anxiety-related processing are observed across many neuropsychiatric disorders, including bipolar disorder. Though polymorphisms in a number of circadian genes confer risk for this disorder, little is known about how changes in circadian gene function disrupt brain circuits critical for anxiety-related processing. Here we characterize neurophysiological activity simultaneously across five limbic brain areas (nucleus accumbens, amygdala, prelimbic cortex, ventral hippocampus, and ventral tegmental area) as wild-type (WT) mice and mice with a mutation in the circadian gene, CLOCK (Clock-Δ19 mice) perform an elevated zero maze task. In WT mice, basal limbic gamma oscillatory synchrony observed before task performance predicted future anxiety-related behaviors. Additionally, dynamic changes in limbic gamma oscillatory synchrony were observed based on the position of WT mice in the zero maze. Clock-Δ19 mice, which displayed an increased propensity to enter the open section of the elevated maze, showed profound deficits in these anxiety-related circuit processes. Thus, our findings link the anxiety-related behavioral deficits observed in Clock-Δ19 mice with dysfunctional gamma oscillatory tuning across limbic circuits and suggest that alterations in limbic oscillatory circuit function induced by circadian gene polymorphisms may contribute to the behavioral manifestations seen in bipolar mania.
Journal of Neuroscience Methods | 2011
Kafui Dzirasa; Romulo Fuentes; Sunil Kumar; Juan M. Potes; Miguel A. L. Nicolelis
While genetically modified mice have become a widely accepted tool for modeling the influence of gene function on the manifestation of neurological and psychiatric endophenotypes, only modest headway has been made in characterizing the functional circuit changes that underlie the disruption of complex behavioral processes in various models. This challenge partially arises from the fact that even simple behaviors require the coordination of many neural circuits vastly distributed across multiple brain areas. As such, many independent neurophysiological alterations are likely to yield overlapping circuit disruptions and ultimately lead to the manifestation of similar behavioral deficits. Here we describe the expansion of our neurophysiological recording approach in an effort to quantify neurophysiological activity across many large scale brain circuits simultaneously in freely behaving genetically modified mice. Using this expanded approach we were able to isolate up to 70 single neurons and record local field potential (LFP) activity simultaneously across 11 brain areas. Moreover, we found that these neurophysiological signals remained viable up to 16 months after implantation. Thus, our approach provides a powerful tool that will aid in dissecting the central brain network changes that underlie the complex behavioral deficits displayed by various genetically modified mice.
Annals of the New York Academy of Sciences | 2012
Kafui Dzirasa; Herbert E. Covington
Major depressive disorder (MDD) is a central nervous system disorder characterized by the culmination of profound disturbances in mood and affective regulation. Animal models serve as a powerful tool for investigating the neurobiological mechanisms underlying this disorder; however, little standardization exists across the wide range of available modeling approaches most often employed. This review will illustrate some of the most challenging obstacles faced by investigators attempting to associate depressive‐like behaviors in rodents with symptoms expressed in MDD. Furthermore, a novel series of depressive‐like criteria based on correlating behavioral endophenotypes, novel in vivo neurophysiological measurements, and molecular/cellular analyses within multiple brain are proposed as a potential solution to overcoming this barrier. Ultimately, linking the neurophysiological and cellular/biochemical actions that contribute to the expression of a defined MDD‐like syndrome will dramatically extend the translational value of the most valid animal models of MDD.
The Journal of Neuroscience | 2010
Kafui Dzirasa; H. Westley Phillips; Tatyana D. Sotnikova; Ali Salahpour; Sunil Kumar; Raul R. Gainetdinov; Marc G. Caron; Miguel A. L. Nicolelis
Although normal dopaminergic tone has been shown to be essential for the induction of cortico-striatal and mesolimbic theta oscillatory activity, the influence of norepinephrine on these brain networks remains relatively unknown. To address this question, we simultaneously recorded local field potentials and single-neuron activity across 10 interconnected brain areas (ventral striatum, frontal association cortex, hippocampus, primary motor cortex, orbital frontal cortex, prelimbic cortex, dorsal lateral striatum, medial dorsal nucleus of thalamus, substantia nigra pars reticularis, and ventral tegmental area) in a combined genetically and pharmacologically induced mouse model of hyponoradrenergia. Our results show that norepinephrine (NE) depletion induces a novel state in male mice characterized by a profound disruption of coherence across multiple cortico-striatal circuits and an increase in mesolimbic cross-structural coherence. Moreover, this brain state is accompanied by a complex behavioral phenotype consisting of transient hyperactivity, stereotypic behaviors, and an acute 12-fold increase in grooming. Notably, treatment with a norepinephrine precursors (l-3,4-dihydroxyphenylalanine at 100 mg/kg or l-threo-dihydroxyphenylserine at 5 mg/kg) or a selective serotonin reuptake inhibitor (fluoxetine at 20 mg/kg) attenuates the abnormal behaviors and selectively reverses the circuit changes observed in NE-depleted mice. Together, our results demonstrate that norepinephrine modulates the dynamic tuning of coherence across cortico-striato-thalamic circuits, and they suggest that changes in coherence across these circuits mediate the abnormal generation of hyperactivity and repetitive behaviors.