Kah Chan Teh
Nanyang Technological University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kah Chan Teh.
IEEE Journal on Selected Areas in Communications | 2011
Yiyang Pei; Ying-Chang Liang; Kah Chan Teh; Kwok Hung Li
Energy-efficient design has become increasingly important to battery-powered wireless devices. In this paper, we focus on the energy efficiency of a cognitive radio network, in which a secondary user senses the channels licensed to some primary users sequentially before it decides to transmit. Energy is consumed in both the channel sensing and transmission processes. The energy-efficient design calls for a careful design in the sensing-access strategies and the sensing order, with the sensing strategy specifying when to stop sensing and start transmission, the access strategy specifying the power level to be used upon transmission, and the sensing order specifying the sequence of channel sensing. Hence, the objective of this paper is to identify the sensing-access strategies and the sensing order that achieve the maximum energy efficiency. We first investigate the design when the channel sensing order is given and formulate the above design problem as a stochastic sequential decision-making problem. To solve it, we study another parametric formulation of the original problem, which rewards transmission throughput and penalizes energy consumption. Dynamic programming can be applied to identify the optimal strategy for the parametric problem. Then, by exploring the relationship between the two formulations and making use of the monotonicity property of the parametric formulation, we develop an algorithm to find the optimal sensing-access strategies for the original problem. Furthermore, we study the joint design of the channel sensing order and the sensing-access strategies. Lastly, the performance of the proposed designs is evaluated through numerical results.
IEEE Transactions on Wireless Communications | 2010
Yiyang Pei; Ying-Chang Liang; Lan Zhang; Kah Chan Teh; Kwok Hung Li
In this paper, we address the physical-layer security issue of a secondary user (SU) in a spectrum-sharing cognitive radio network (CRN) from an information-theoretic perspective. Specially, we consider a secure multiple-input single-output (MISO) cognitive radio channel, where a multi-antenna SU transmitter (SU-Tx) sends confidential information to a legitimate SU receiver (SU-Rx) in the presence of an eavesdropper and on the licensed band of a primary user (PU). The secrecy capacity of the channel is characterized, which is a quasiconvex optimization problem of finding the capacity-achieving transmit covariance matrix under the joint transmit power and interference power constraints. Two numerical approaches are proposed to derive the optimal transmit covariance matrix. The first approach recasts the original quasiconvex problem into a single convex semidefinite program (SDP) by exploring its inherent convexity; while the second one explores the relationship between the secure CRN and the conventional CRN and transforms the original problem into a sequence of optimization problems associated with the conventional CRN, which helps to prove that beamforming is the optimal strategy for the secure MISO CR channel. In addition, to reduce the computational complexity, three suboptimal schemes are presented, namely, scaled secret beamforming (SSB), projected secret beamforming (PSB) and projected cognitive beamforming (PCB). Lastly, computer simulation results show that the three suboptimal schemes can approach the secrecy capacity well under certain conditions.
IEEE Transactions on Wireless Communications | 2009
Yiyang Pei; Ying-Chang Liang; Kah Chan Teh; Kwok Hung Li
In this paper, we consider a wideband cognitive radio network (CRN) which can simultaneously sense multiple narrowband channels and thus aggregate the perceived available channels for transmission. We study the problem of designing the optimal spectrum sensing time and power allocation schemes so as to maximize the average achievable throughput of the CRN subject to the constraints of probability of detection and the total transmit power. The optimal sensing time and power allocation strategies are developed under two different total power constraints, namely, instantaneous power constraint and average power constraint. Finally, numerical results show that, under both cases, for a CRN with three 6 MHz channels, if the frame duration is 100 ms and the target probability of detection is 90% for the worst case signal-to-noise ratio of primary users being -12 dB, -15 dB and -20 dB, respectively, the optimal sensing time is around 6 ms and it is almost insensitive to the total transmit power.
IEEE Transactions on Signal Processing | 2011
Yiyang Pei; Ying-Chang Liang; Kah Chan Teh; Kwok Hung Li
In this paper, we address the issue of optimal transmitter design to achieve physical layer security for a multiple-input single-output (MISO) cognitive radio network (CRN), in which a secondary user transmitter (SU-Tx) sends confidential information to a SU receiver (SU-Rx) on the same frequency band with a primary user (PU) in the presence of an eavesdropper receiver (ED-Rx). It is assumed that all the channel state information (CSI) of the secondary, primary and eavesdropper channels is not perfectly known at the SU-Tx. The optimal transmitter design, under the restriction of Gaussian signaling without preprocessing of information, involves a nonconvex semiinfinite optimization problem which maximizes the rate of the secondary link while avoiding harmful interference to the PU and keeping the eavesdropper totally ignorant of the messages sent regardless of the uncertainties in the CSI. We propose two approaches to solve this challenging optimization problem. The first one relates the original problem to a sequence of semiinfinite capacity-achieving transmitter design problems in an auxiliary CRN without any eavesdropper, which can then be solved through transformations and using convex semidefinite programs (SDPs). The second approach explores the hidden convexity of the problem and hence transforms it into a single SDP, which significantly reduces the computational complexity. Furthermore, a few heuristic beamforming solutions for the ease of implementation are also introduced. Finally, simulation results are presented to evaluate the performance of the proposed optimal and suboptimal solutions.
IEEE Communications Letters | 2013
Zhiping Shi; Kah Chan Teh; Kwok Hung Li
In this paper, we consider a joint design of energy-efficient sensing and transmission durations for a cognitive radio (CR) system in which the primary user (PU) is protected. The design problem is formulated as a function of two variables, which are sensing and transmission durations, subject to the interference to the PU. The optimal solutions are analyzed and a sub-optimal algorithm that maximizes the energy efficiency for the CR system is presented. The performance of the proposed energy-efficient design for the CR system is also evaluated.
IEEE Transactions on Communications | 1998
Kah Chan Teh; Alex C. Kot; Kwok Hung Li
Analytical expressions for bit-error probability are derived for a fast frequency-hopping binary frequency-shift keying (FFH/BFSK) spread-spectrum communication system over a fading channel with worst-case band multitone jamming (MTJ) and additive white Gaussian noise (AWGN). An FFH system employing either a linear-combining receiver or a clipper receiver is investigated. The desired signal and MTJ are assumed to undergo independent fading, and our analysis, validated with simulation results, shows that the performance of the system is slightly improved as the severity of the MTJ fading is increased. The clipper receiver is found to be superior to the linear-combining receiver when the jamming power is strong. The worst-case MTJ is shown to be more harmful than the corresponding worst-case partial-band noise jamming over a fading channel with AWGN.
personal, indoor and mobile radio communications | 2009
Yiyang Pei; Ying-Chang Liang; Kah Chan Teh; Kwok Hung Li
In this paper, we study the sensing-throughput tradeoff problem for a multiple-channel cognitive radio (CR) network. In particular, using the sensing-throughput tradeoff metric, we investigate the design of the optimal spectrum sensing time and power allocation schemes so as to maximize the aggregate ergodic throughput of the cognitive radio network to guarantee the quality of service (QoS) of the primary users (PUs) without exceeding the power limit of the secondary transmitter. The optimal sensing time and power allocation strategies are developed under the average power constraint. Finally, numerical results show that, for a CR network with 3 channels, whose signal-to-noise ratio of PUs are −12dB, −15dB and −20dB, respectively, there is an optimal sensing time, and the optimal sensing time is almost insensitive to the total transmit power.
IEEE Communications Letters | 2004
Feng Yang; Kwok Hung Li; Kah Chan Teh
In this letter, we propose a blind carrier frequency offset (CFO) estimator with high resolution and high bandwidth efficiency for orthogonal frequency-division multiplexing (OFDM) systems. The proposed estimator utilizes minimum output variance to estimate CFO. Simulation results show that the proposed estimator is highly accurate and reliable for OFDM systems.
IEEE Communications Letters | 1997
Kah Chan Teh; Alex C. Kot; Kwok Hung Li
An exact closed-form expression of the characteristic function is derived for a fast frequency-hopping (FFH) binary orthogonal frequency-shift-keying (FSK) spread-spectrum (SS) communication system. The FFH system employs a product combining receiver over a Rayleigh-fading channel with partial-band jamming and additive white Gaussian noise (AWGN). The derived characteristic function is then used to obtain a compact bit error rate (BER) expression for different diversity levels. Our study shows that there exists an optimum diversity level under certain channel conditions.
IEEE Transactions on Information Theory | 2011
Qian Clara Li; Kwok Hung Li; Kah Chan Teh
In this paper, we investigate the diversity-multiplexing tradeoff (DMT) of a multiple-input-multiple-output (MIMO) full-duplex single-user multihop relay channel, where a pair of source and destination communicates via multiple layers of relays. All communication terminals could be equipped with multiple antennas. The relays operate in a full-duplex mode. By incorporating time-domain linear transformation into amplify-and-forward (AF) based relaying, we propose an AF-based space-time relay scheme and show that the DMT upper bound of the channel can be achieved by properly designing space-time (ST) codes at the source.