Kai-Chiang Wu
Carnegie Mellon University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kai-Chiang Wu.
design, automation, and test in europe | 2009
Kai-Chiang Wu; Diana Marculescu
Negative Bias Temperature Instability (NBTI), a PMOS aging phenomenon causing significant loss on circuit performance and lifetime, has become a critical challenge for temporal reliability concerns in nanoscale designs. Aggressive technology scaling trends, such as thinner gate oxide without proportional downscaling of supply voltage, necessitate a design optimization flow considering NBTI effects at the early stages. In this paper, we present a novel framework using joint logic restructuring and pin reordering to mitigate NBTI-induced performance degradation. Based on detecting functional symmetries and transistor stacking effects, the proposed methodology involves only wire perturbation and introduces no gate area overhead at all. Experimental results reveal that, by using this approach, on average 56% of performance loss due to NBTI can be recovered. Moreover, our methodology reduces the number of critical transistors remaining under severe NBTI and thus, transistor resizing can be applied to further mitigate NBTI effects with low area overhead.
IEEE Transactions on Very Large Scale Integration Systems | 2013
Kai-Chiang Wu; Diana Marculescu
Due to current technology scaling trends such as shrinking feature sizes and decreasing supply voltages, circuit reliability is becoming more susceptible to radiation-induced transient faults (soft errors). Soft errors, which have been a great concern in memories, are now a main factor in reliability degradation of logic circuits as well. In this paper, we present a systematic and integrated methodology for circuit robustness to soft errors. The proposed soft error rate (SER) reduction framework, based on redundancy addition and removal (RAR), aims at eliminating those gates with large contribution to the overall SER. Several metrics and constraints are introduced to guide the RAR-based approach toward SER reduction. Furthermore, we integrate a resizing strategy into our framework, as post-RAR additive SER optimization. The strategy can identify most critical gates to be upsized and thereby, minimize area and power overheads while maintaining a high level of soft error robustness. Experimental results show that the proposed RAR-based framework can achieve up to 70% reduction in output failure probability. On average, about 23% SER reduction is obtained with less than 4% area overhead.
asia and south pacific design automation conference | 2008
Kai-Chiang Wu; Diana Marculescu
Due to current technology scaling trends such as shrinking feature sizes and reducing supply voltages, circuit reliability has become more susceptible to radiation-induced transient faults (soft errors). Soft errors, which have been a great concern in memories, are now a main factor in reliability degradation of logic circuits. In this paper, we propose a novel framework based on redundancy addition and removal (RAR) for soft error rate (SER) reduction. Several metrics and constraints are introduced to guide our proposed framework towards SER reduction in an efficient manner. Experimental results show that up to 70% reduction in output failure probability can be achieved with relatively low area overhead.
design, automation, and test in europe | 2011
Kai-Chiang Wu; Diana Marculescu
Device aging, which causes significant loss on circuit performance and lifetime, has been a main factor in reliability degradation of nanoscale designs. Aggressive technology scaling trends, such as thinner gate oxide without proportional down-scaling of supply voltage, necessitate an aging-aware analysis and optimization flow during early design stages. Since only a small portion of critical and near-critical paths can be sensitized and may determine the circuit delay under aging, path sensitization should also be explicitly addressed for more accurate and efficient optimization. In this paper, we first investigate the impact of path sensitization on aging-aware timing analysis and then present a novel framework for aging-aware timing optimization considering path sensitization. By extracting and manipulating critical sub-circuits accounting for the effective circuit delay, our proposed framework can reduce aging-induced performance degradation to only 1.21% or one-seventh of the original performance loss with less than 2% area overhead.
international conference on computer design | 2008
Kai-Chiang Wu; Diana Marculescu
Nanoscale integrated circuits are becoming increasingly sensitive to radiation-induced transient faults (soft errors) due to current technology scaling trends, such as shrinking feature sizes and reducing supply voltages. Soft errors, which have been a significant concern in memories, are now a main factor in reliability degradation of logic circuits. This paper presents a power-aware methodology using dual supply voltages for soft error hardening. Given a constraint on power overhead, our proposed framework can minimize the soft error rate (SER) of a circuit via selective voltage scaling. On average, circuit SER can be reduced by 33.45% for various sizes of transient glitches with only 11.74% energy increase. The overhead in normalized power-delay-area product per 1% SER reduction is 0.64%, 1.33X less than that of existing state-of-the-art approaches.
international symposium on low power electronics and design | 2011
Kai-Chiang Wu; Diana Marculescu; Ming-Chao Lee; Shih-Chieh Chang
Device aging, which causes significant loss on circuit performance and lifetime, has been a main factor in reliability degradation of nanoscale designs. Aggressive technology scaling trends, such as thinner gate oxide without proportional downscaling of supply voltage, necessitate an aging-aware analysis and optimization flow in the early design stages. Since PMOS sleep transistors in power-gated circuits suffer from static NBTI during active mode and age very rapidly, the aging of power-gated circuits should be explicitly addressed. In this paper, for power-gated circuits, we present a novel methodology for analyzing and mitigating NBTI-induced performance degradation. Aging effects on both logic networks and sleep transistors are jointly considered for accurate analysis. By introducing 25% redundant sleep transistors with reverse body bias applied, the proposed methodology can significantly mitigate the long-term performance degradation and thus extend the circuit lifetime by 3X.
design automation conference | 2004
Shih-Chieh Chang; Cheng-Tao Hsieh; Kai-Chiang Wu
Several factors such as process variation, noises, and delay defects can degrade the reliabilities of a circuit. Traditional methods add a pessimistic timing margin to resolve delay variation problems. In this paper, instead of sacrificing the performance, we propose a re-synthesis technique which adds redundant logics to protect the performance. Because nodes in the critical paths have zero slacks and are vulnerable to delay variation, we formulate the problem of tolerating delay variation to be the problem of increasing the slacks of nodes. Our re-synthesis technique can increase the slacks of all nodes or wires to be larger than a pre-determined value. Our experimental results show that additional area penalty is around 21% for 10% of delay variation tolerance.
design, automation, and test in europe | 2012
Kai-Chiang Wu; Ming-Chao Lee; Diana Marculescu; Shih-Chieh Chang
Lifetime (long-term) reliability has been a main design challenge as technology scaling continues. Time-dependent dielectric breakdown (TDDB), negative bias temperature instability (NBTI), and electromigration (EM) are some of the critical failure mechanisms affecting lifetime reliability. Due to the correlation between different failure mechanisms and their significant dependence on the operating temperature, existing models assuming constant failure rate and additive impact of failure mechanisms will underestimate the lifetime of a system, usually measured by mean-time-to-failure (MTTF). In this paper, we propose a new methodology which evaluates system lifetime in MTTF and relies on Monte-Carlo simulation for verifying results. Temperature variations and the correlation between failure mechanisms are considered so as to mitigate lifetime underestimation. The proposed methodology, when applied on an Alpha 21264 processor, provides less pessimistic lifetime evaluation than the existing models based on sum of failure rate. Our experimental results also indicate that, by considering the correlation of TDDB and NBTI, the lifetime of a system is likely not dominated by TDDB or NBTI, but by EM or other failure mechanisms.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems | 2014
Kai-Chiang Wu; Ing Chao Lin; Yao Te Wang; Shuen Shiang Yang
Power gating is an effective way to reduce leakage power. This technique uses high Vth transistors, called sleep transistors, to turn off the power supply. However, sleep transistors suffer from the bias temperature instability (BTI) effect, resulting in an increased Vth, and reduced reliability. This paper proposes two BTI-aware sleep transistor sizing algorithms to reduce the total width of sleep transistors based on the distributed sleep transistor network structure. The proposed algorithms reduce total width by more than 16.08%. More area can be reduced if the BTI effect on both sleep and cluster transistors is considered.
design, automation, and test in europe | 2010
Kai-Chiang Wu; Diana Marculescu
Soft errors have been a critical reliability concern in nanoscale integrated circuits, especially in sequential circuits where a latched error can be propagated for multiple clock cycles and affect more than one output, more than once. This paper presents an analytical methodology for enhancing the soft error tolerance of sequential circuits. By using clock skew scheduling, we propose to minimize the probability of unwanted transient pulses being latched and also prevent latched errors from propagating through sequential circuits repeatedly. The overall methodology is formulated as a piecewise linear programming problem whose optimal solution can be found by existing mixed integer linear programming solvers. Experiments reveal that 30–40% reduction in the soft error rate for a wide range of benchmarks can be achieved.