Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kai Moshammer is active.

Publication


Featured researches published by Kai Moshammer.


Journal of Physical Chemistry A | 2015

Detection and Identification of the Keto-Hydroperoxide (HOOCH2OCHO) and other Intermediates during Low-Temperature Oxidation of Dimethyl Ether

Kai Moshammer; Ahren W. Jasper; Denisia M. Popolan-Vaida; Arnas Lucassen; Pascal Diévart; Hatem Selim; Arkke J. Eskola; Craig A. Taatjes; Stephen R. Leone; S. Mani Sarathy; Yiguang Ju; Philippe Dagaut; Katharina Kohse-Höinghaus; Nils Hansen

In this paper we report the detection and identification of the keto-hydroperoxide (hydroperoxymethyl formate, HPMF, HOOCH2OCHO) and other partially oxidized intermediate species arising from the low-temperature (540 K) oxidation of dimethyl ether (DME). These observations were made possible by coupling a jet-stirred reactor with molecular-beam sampling capabilities, operated near atmospheric pressure, to a reflectron time-of-flight mass spectrometer that employs single-photon ionization via tunable synchrotron-generated vacuum-ultraviolet radiation. On the basis of experimentally observed ionization thresholds and fragmentation appearance energies, interpreted with the aid of ab initio calculations, we have identified HPMF and its conceivable decomposition products HC(O)O(O)CH (formic acid anhydride), HC(O)OOH (performic acid), and HOC(O)OH (carbonic acid). Other intermediates that were detected and identified include HC(O)OCH3 (methyl formate), cycl-CH2-O-CH2-O- (1,3-dioxetane), CH3OOH (methyl hydroperoxide), HC(O)OH (formic acid), and H2O2 (hydrogen peroxide). We show that the theoretical characterization of multiple conformeric structures of some intermediates is required when interpreting the experimentally observed ionization thresholds, and a simple method is presented for estimating the importance of multiple conformers at the estimated temperature (∼100 K) of the present molecular beam. We also discuss possible formation pathways of the detected species: for example, supported by potential energy surface calculations, we show that performic acid may be a minor channel of the O2 + ĊH2OCH2OOH reaction, resulting from the decomposition of the HOOCH2OĊHOOH intermediate, which predominantly leads to the HPMF.


Journal of Physical Chemistry A | 2016

Quantification of the Keto-Hydroperoxide (HOOCH2OCHO) and Other Elusive Intermediates during Low-Temperature Oxidation of Dimethyl Ether

Kai Moshammer; Ahren W. Jasper; Denisia M. Popolan-Vaida; Zhandong Wang; Vijai Shankar Bhavani Shankar; Lena Ruwe; Craig A. Taatjes; Philippe Dagaut; Nils Hansen

This work provides new temperature-dependent mole fractions of elusive intermediates relevant to the low-temperature oxidation of dimethyl ether (DME). It extends the previous study of Moshammer et al. [ J. Phys. Chem. A 2015 , 119 , 7361 - 7374 ] in which a combination of a jet-stirred reactor and molecular beam mass spectrometry with single-photon ionization via tunable synchrotron-generated vacuum-ultraviolet radiation was used to identify (but not quantify) several highly oxygenated species. Here, temperature-dependent concentration profiles of 17 components were determined in the range of 450-1000 K and compared to up-to-date kinetic modeling results. Special emphasis is paid toward the validation and application of a theoretical method for predicting photoionization cross sections that are hard to obtain experimentally but essential to turn mass spectral data into mole fraction profiles. The presented approach enabled the quantification of the hydroperoxymethyl formate (HOOCH2OCH2O), which is a key intermediate in the low-temperature oxidation of DME. The quantification of this keto-hydroperoxide together with the temperature-dependent concentration profiles of other intermediates including H2O2, HCOOH, CH3OCHO, and CH3OOH reveals new opportunities for the development of a next-generation DME combustion chemistry mechanism.


Zeitschrift für Physikalische Chemie | 2015

Formation of oxygenated and hydrocarbon intermediates in premixed combustion of 2-methylfuran

Kai Moshammer; Arnas Lucassen; Casimir Togbé; Katharina Kohse-Höinghaus; Nils Hansen

Abstract This paper focuses on the combustion chemistry of 2-methylfuran (2-MF), a potential biofuel, and it is built on the previous work of Tran et al. [Combust. Flame 161 (2014) 766]. In their work, they had combined detailed flame chemistry modeling with flame speciation data based on flame-sampling molecular beam mass spectrometry (MBMS) with electron ionization and gas chromatography with MS detection. In this work, we significantly extend those previous studies by in-situ isomer-resolving species identification and quantification. Specifically, we have determined the detailed chemical structure of a premixed laminar 2-MF flame using flame-sampling high-resolution MBMS with synchrotron-generated vacuum-ultraviolet radiation. Mole fraction profiles of 60 intermediate, reactant, and product species were measured in order to assess the pollutant potential of this possible next-generation biofuel. Special emphasis is paid towards the fuels ability to form aromatic and oxygenated intermediates during incomplete combustion processes, with the latter species representing a variety of different classes including alcohols, ethers, enols, ketones, aldehydes, acids, and ketenes. Whenever possible the experimental data are compared to the results of model calculations using the 2-MF combustion chemistry model of Tran et al., but it should be noted that many newly detected species are not included in the calculations. The experimental data presented in this work provides guidance towards to development of a next-generation 2-MF combustion chemistry model.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds

Zhandong Wang; Denisia M. Popolan-Vaida; Bingjie Chen; Kai Moshammer; Samah Y. Mohamed; Heng Wang; Salim Sioud; Misjudeen Raji; Katharina Kohse-Höinghaus; Nils Hansen; Philippe Dagaut; Stephen R. Leone; S. Mani Sarathy

Significance Highly oxygenated molecules are involved in autooxidation reactions leading to the formation of secondary organic aerosols (SOAs); they are also critical intermediates in autooxidation processes for liquid hydrogen degradation and the ignition of fuels in advanced combustion systems. However, these reactions are still poorly understood. In this study, we unveil a generalized reaction mechanism involving the autooxidation of peroxy radicals with at least three stages of sequential O2 addition. We elucidate important underlying kinetics and structural characteristics of autooxidation processes used for developing new technologies including those aimed at reducing climatically active SOAs and pollutants from fuel combustion. We show that advances can be made by bridging experimental and theoretical methods used by atmospheric and combustion scientists. Decades of research on the autooxidation of organic compounds have provided fundamental and practical insights into these processes; however, the structure of many key autooxidation intermediates and the reactions leading to their formation still remain unclear. This work provides additional experimental evidence that highly oxygenated intermediates with one or more hydroperoxy groups are prevalent in the autooxidation of various oxygenated (e.g., alcohol, aldehyde, keto compounds, ether, and ester) and nonoxygenated (e.g., normal alkane, branched alkane, and cycloalkane) organic compounds. These findings improve our understanding of autooxidation reaction mechanisms that are routinely used to predict fuel ignition and oxidative stability of liquid hydrocarbons, while also providing insights relevant to the formation mechanisms of tropospheric aerosol building blocks. The direct observation of highly oxygenated intermediates for the autooxidation of alkanes at 500–600 K builds upon prior observations made in atmospheric conditions for the autooxidation of terpenes and other unsaturated hydrocarbons; it shows that highly oxygenated intermediates are stable at conditions above room temperature. These results further reveal that highly oxygenated intermediates are not only accessible by chemical activation but also by thermal activation. Theoretical calculations on H-atom migration reactions are presented to rationalize the relationship between the organic compound’s molecular structure (n-alkane, branched alkane, and cycloalkane) and its propensity to produce highly oxygenated intermediates via extensive autooxidation of hydroperoxyalkylperoxy radicals. Finally, detailed chemical kinetic simulations demonstrate the influence of these additional reaction pathways on the ignition of practical fuels.


Combustion Theory and Modelling | 2015

A numerical study of highly-diluted, burner-stabilised dimethyl ether flames

Daniel Mayer; Kai Moshammer; Liming Cai; Heinz Pitsch; Katharina Kohse-Höinghaus

Recently, a new burner was designed by Zhang et al. (Proc. Combust. Inst. 34 [2013], 763–770) to enable the investigation of 1D, premixed flames at atmospheric pressure with a temperature in the burnt gases near 1500 K. It consists of a matrix burner plate with alternating fuel and oxidiser feeds that, because of small-scale nozzles, mix quite rapidly. Flames at high dilution and reduced temperatures such as realised here are of relevance for the understanding of low-temperature combustion strategies. In this work, we examine the burner with regard to the validity of the 1D assumption for the investigated flames. Experimental measurements are conducted and 1D and 3D simulations are performed in which the chemistry is described by a detailed chemistry approach based on a reduced reaction scheme derived from the mechanism of Fischer et al. (Int. J. Chem. Kinetics 32 [2000], 713–740). The experimental results are compared to 1D simulations with two different temperature treatments. First, the unburnt temperature is set to the measured temperature closest to the burner surface; second, the experimental temperature profile is prescribed in the whole simulation domain without solving the energy equation. The comparison shows that the 1D simulation predicts the experimental results reasonably well, if the experimentally obtained temperature profile is prescribed in the simulation domain. Differences are found in the mole fractions of methyl and formaldehyde. Further comparisons of the experimental data with 3D simulation results and comparisons of 3D and 1D simulation results indicate that the differences between measured and computed mole fractions of these species are not a result of the 3D nature of the experimental flame and might be attributed to the chemical mechanism. The conclusion is that the measurement data can be used for validation purposes with the 1D simulation setup shown here if the measured temperature profiles are prescribed in the 1D simulation domain.


Combustion and Flame | 2013

Detailed mass spectrometric and modeling study of isomeric butene flames

Marina Schenk; Larisa León; Kai Moshammer; Patrick Oßwald; Thomas Zeuch; Lars Seidel; Fabian Mauss; Katharina Kohse-Höinghaus


Combustion and Flame | 2015

Experimental and kinetic modeling study of the low- and intermediate-temperature oxidation of dimethyl ether

Zhandong Wang; Xiaoyuan Zhang; Lili Xing; Lidong Zhang; Friederike Herrmann; Kai Moshammer; Fei Qi; Katharina Kohse-Höinghaus


Combustion and Flame | 2013

An experimental and kinetic modeling study of 2-methyltetrahydrofuran flames

Kai Moshammer; Stijn Vranckx; Harish Kumar Chakravarty; Prajakta R. Parab; Ravi X. Fernandes; Katharina Kohse-Höinghaus


Combustion and Flame | 2016

Additional chain-branching pathways in the low-temperature oxidation of branched alkanes

Zhandong Wang; Lidong Zhang; Kai Moshammer; Denisia M. Popolan-Vaida; Vijai Shankar Bhavani Shankar; Arnas Lucassen; Christian Hemken; Craig A. Taatjes; Stephen R. Leone; Katharina Kohse-Höinghaus; Nils Hansen; Philippe Dagaut; S. Mani Sarathy


Combustion and Flame | 2015

Comprehensive kinetic modeling and experimental study of a fuel-rich, premixed n-heptane flame

Lars Seidel; Kai Moshammer; Xiaoxiao Wang; Thomas Zeuch; Katharina Kohse-Höinghaus; Fabian Mauss

Collaboration


Dive into the Kai Moshammer's collaboration.

Top Co-Authors

Avatar

Nils Hansen

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Dagaut

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Denisia M. Popolan-Vaida

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Zhandong Wang

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

S. Mani Sarathy

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge