Kai N. Stölting
University of Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kai N. Stölting.
Nature | 2006
Marta Barluenga; Kai N. Stölting; Walter Salzburger; Moritz Muschick; Axel Meyer
Sympatric speciation, the formation of species in the absence of geographical barriers, remains one of the most contentious concepts in evolutionary biology. Although speciation under sympatric conditions seems theoretically possible, empirical studies are scarce and only a few credible examples of sympatric speciation exist. Here we present a convincing case of sympatric speciation in the Midas cichlid species complex (Amphilophus sp.) in a young and small volcanic crater lake in Nicaragua. Our study includes phylogeographic, population-genetic (based on mitochondrial DNA, microsatellites and amplified fragment length polymorphisms), morphometric and ecological analyses. We find, first, that crater Lake Apoyo was seeded only once by the ancestral high-bodied benthic species Amphilophus citrinellus, the most common cichlid species in the area; second, that a new elongated limnetic species (Amphilophus zaliosus) evolved in Lake Apoyo from the ancestral species (A. citrinellus) within less than ∼10,000 yr; third, that the two species in Lake Apoyo are reproductively isolated; and fourth, that the two species are eco-morphologically distinct.
Genetica | 2008
Luc F. Bussière; John Hunt; Kai N. Stölting; Michael D. Jennions; Robert Brooks
Mate choice for good-genes remains one of the most controversial evolutionary processes ever proposed. This is partly because strong directional choice should theoretically deplete the genetic variation that explains the evolution of this type of female mating preference (the so-called lek paradox). Moreover, good-genes benefits are generally assumed to be too small to outweigh opposing direct selection on females. Here, we review recent progress in the study of mate choice for genetic quality, focussing particularly on the potential for genotype by environment interactions (GEIs) to rescue additive genetic variation for quality, and thereby resolve the lek paradox. We raise five questions that we think will stimulate empirical progress in this field, and suggest directions for research in each area: (1) How is condition-dependence affected by environmental variation? (2) How important are GEIs for maintaining additive genetic variance in condition? (3) How much do GEIs reduce the signalling value of male condition? (4) How does GEI affect the multivariate version of the lek paradox? (5) Have mating biases for high-condition males evolved because of indirect benefits?
Molecular Phylogenetics and Evolution | 2002
Tomas Hrbek; Fahrettin Küçük; Tancred Frickey; Kai N. Stölting; Rudolph H Wildekamp; Axel Meyer
Phylogenetic relationships of a subset of Aphanius fish comprising central Anatolia, Turkey, are investigated to test the hypothesis of geographic speciation driven by early Pliocene orogenic events in spite of morphological similarity. We use 3434 aligned base pairs of mitochondrial DNA from 42 samples representing 36 populations of three species and six outgroup species to test this hypothesis. Genes analyzed include those encoding the 12S and 16S ribosomal RNAs; transfer RNAs coding for valine, leucine, isoleucine, glutamine, methionine, tryptophan, alanine, asparagine, cysteine, and tyrosine; and complete NADH dehydrogenase subunits I and II. Distance based minimum evolution and maximum-likelihood analyses identify six well-supported clades consisting of Aphanius danfordii, Aphanius sp. aff danfordii, and four clades of Aphanius anatoliae. Parsimony analysis results in 462 equally parsimonious trees, all of which contain the six well supported clades identified in the other analyses. Our phylogenetic results are supported by hybridization studies (Villwock, 1964), and by the geological history of Anatolia. Phylogenetic relationships among the six clades are only weakly supported, however, and differ among analytical methods. We therefore test and subsequently reject the hypothesis of simultaneous diversification among the six central Anatolian clades. However, our analyses do not identify any internodes that are significantly better supported than expected by chance alone. Therefore, although bifurcating branching order is hypothesized to underlie this radiation, the exact branching order is difficult to estimate with confidence.
BMC Evolutionary Biology | 2008
Christian Michel; Brendan J. Hicks; Kai N. Stölting; Andrew C. Clarke; Mark I. Stevens; Raymond Tana; Axel Meyer; Michael R. van den Heuvel
BackgroundMany postglacial lakes contain fish species with distinct ecomorphs. Similar evolutionary scenarios might be acting on evolutionarily young fish communities in lakes of remote islands. One process that drives diversification in island freshwater fish species is the colonization of depauperate freshwater environments by diadromous (migratory) taxa, which secondarily lose their migratory behaviour. The loss of migration limits dispersal and gene flow between distant populations, and, therefore, is expected to facilitate local morphological and genetic differentiation. To date, most studies have focused on interspecific relationships among migratory species and their non-migratory sister taxa. We hypothesize that the loss of migration facilitates intraspecific morphological, behavioural, and genetic differentiation between migratory and non-migratory populations of facultatively diadromous taxa, and, hence, incipient speciation of island freshwater fish species.ResultsMicrochemical analyses of otolith isotopes (88Sr, 137Ba and 43Ca) differentiated migratory and non-migratory stocks of the New Zealand endemic Gobiomorphus cotidianus McDowall (Eleotridae). Samples were taken from two rivers, one lake and two geographically-separated outgroup locations. Meristic analyses of oculoscapular lateral line canals documented a gradual reduction of these structures in the non-migratory populations. Amplified fragment length polymorphism (AFLP) fingerprints revealed considerable genetic isolation between migratory and non-migratory populations. Temporal differences in reproductive timing (migratory = winter spawners, non-migratory = summer spawners; as inferred from gonadosomatic indices) provide a prezygotic reproductive isolation mechanism between the two ecotypes.ConclusionThis study provides a holistic look at the role of diadromy in incipient speciation of island freshwater fish species. All four analytical approaches (otolith microchemistry, morphology, spawning timing, population genetics) yield congruent results, and provide clear and independent evidence for the existence of distinct migratory and non-migratory ecotypes within a river in a geographically confined range. The morphological changes within the non-migratory populations parallel interspecific patterns observed in all non-migratory New Zealand endemic Gobiomorphus species and other derived gobiid taxa, a pattern suggesting parallel evolution. This study indicates, for the first time, that distinct ecotypes of island freshwater fish species may be formed as a consequence of loss of migration and subsequent diversification. Therefore, if reproductive isolation persists, these processes may provide a mechanism to facilitate speciation.
BMC Genomics | 2009
Kai N. Stölting; Gerrit Gort; Christian Wüst; Anthony B. Wilson
BackgroundComplementary-DNA based amplified fragment length polymorphism (cDNA-AFLP) is a commonly used tool for assessing the genetic regulation of traits through the correlation of trait expression with cDNA expression profiles. In spite of the frequent application of this method, studies on the optimization of the cDNA-AFLP assay design are rare and have typically been taxonomically restricted. Here, we model cDNA-AFLPs on all 92 eukaryotic species for which cDNA pools are currently available, using all combinations of eight restriction enzymes standard in cDNA-AFLP screens.ResultsIn silco simulations reveal that cDNA pool coverage is largely determined by the choice of individual restriction enzymes and that, through the choice of optimal enzyme combinations, coverage can be increased from <40% to 75% without changing the underlying experimental design. We find evidence of phylogenetic signal in the coverage data, which is largely mediated by organismal GC content. There is nonetheless a high degree of consistency in cDNA pool coverage for particular enzyme combinations, indicating that our recommendations should be applicable to most eukaryotic systems. We also explore the relationship between the average observed fragment number per selective AFLP-PCR reaction and the size of the underlying cDNA pool, and show how AFLP experiments can be used to estimate the number of genes expressed in a target tissue.ConclusionThe insights gained from in silico screening of cDNA-AFLPs from a broad sampling of eukaryotes provide a set of guidelines that should help to substantially increase the efficiency of future cDNA-AFLP experiments in eukaryotes. In silico simulations also suggest a novel use of cDNA-AFLP screens to determine the number of transcripts expressed in a target tissue, an application that should be invaluable as next-generation sequencing technologies are adapted for differential display.
Evolutionary Ecology | 2012
Jasmin D. Winkler; Kai N. Stölting; Anthony B. Wilson
Fecundity selection, acting on traits enhancing reproductive output, is an important determinant of organismal body size. Due to a unique mode of reproduction, mating success and fecundity are positively correlated with body size in both sexes of male-pregnant Syngnathus pipefish. As male pipefish brood eggs on their tail and egg production in females occurs in their ovaries (located in the trunk region), fecundity selection is expected to affect both sexes in this species, and is predicted to act differently on body proportions of males and females during their development. Based on this hypothesis, we investigated sexual size dimorphism in body size allometry and vertebral numbers across populations of the widespread European pipefish Syngnathus typhle. Despite the absence of sex-specific differences in overall and region-specific vertebral counts, male and female pipefish differ significantly in the relative lengths of their trunk and tail regions, consistent with region-specific selection pressures in the two sexes. Male pipefish show significant growth allometry, with disproportionate growth in the brooding tail region relative to the trunk, resulting in increasingly skewed region-specific sexual size dimorphism with increasing body size, a pattern consistent across five study populations. Sex-specific differences in patterns of growth in S. typhle support the hypothesis that fecundity selection can contribute to the evolution of sexual size dimorphism.
Molecular Ecology Resources | 2011
Kai N. Stölting; Andrew C. Clarke; Heidi M. Meudt; Wolf U. Blankenhorn; Anthony B. Wilson
The amplified fragment length polymorphism (AFLP) technique is a widely used multi‐purpose DNA fingerprinting tool. The ability to size‐separate fluorescently labelled AFLP fragments on a capillary electrophoresis instrument has provided a means for high‐throughput genome screening, an approach particularly useful in studying the molecular ecology of nonmodel organisms. While the ‘per‐marker‐generated’ costs for AFLP are low, fluorescently labelled oligonucleotides remain costly. We present a cost‐effective method for fluorescently end‐labelling AFLPs that should make this tool more readily accessible for laboratories with limited budgets. Both standard fluorescent AFLPs and the end‐labelled alternatives presented here are repeatable and produce similar numbers of fragments when scored using both manual and automated scoring methods. While it is not recommended to combine data using the two approaches, the results of the methods are qualitatively comparable, indicating that AFLP end‐labelling is a robust alternative to standard methods of AFLP genotyping. For researchers commencing a new AFLP project, the AFLP end‐labelling method outlined here is easily implemented, as it does not require major changes to PCR protocols and can significantly reduce the costs of AFLP studies.
BioEssays | 2007
Kai N. Stölting; Anthony B. Wilson
Molecular Phylogenetics and Evolution | 2004
Tomas Hrbek; Kai N. Stölting; Fevzi Bardakci; Fahrettin Küçük; Rudolf H. Wildekamp; Axel Meyer
Environmental Science & Technology | 2007
Michael R. van den Heuvel; Christian Michel; Mark I. Stevens; Andrew C. Clarke; Kai N. Stölting; Brendan J. Hicks; Louis A. Tremblay