Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kai W. Wucherpfennig is active.

Publication


Featured researches published by Kai W. Wucherpfennig.


Cell | 1995

Molecular mimicry in T cell-mediated autoimmunity: Viral peptides activate human T cell clones specific for myelin basic protein

Kai W. Wucherpfennig; Jack L. Strominger

Abstract Structural similarity between viral T cell epitopes and self-peptides could lead to the induction of an autoaggressive T cell response. Based on the structural requirements for both MHC class 11 binding and TCR recognition of an immunodominant myelin basic protein (MBP) peptide, criteria for a data base search were developed in which the degeneracy of amino acid side chains required for MHC class 11 binding and the conservation of those required for T cell activation were considered. A panel of 129 peptides that matched the molecular mimicry motif was tested on seven MBP-specific T cell clones from multiple sclerosis patients. Seven viral and one bacterial peptide efficiently activated three of these clones. Only one peptide could have been identified as a molecular mimic by sequence alignment. The observation that a single T cell receptor can recognize quite distinct but structurally related peptides from multiple pathogens has important implications for understanding the pathogenesis of autoimmunity.


Nature Medicine | 2007

Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation.

Thomas Korn; Jayagopala Reddy; Wenda Gao; Estelle Bettelli; Amit Awasthi; Troels R. Petersen; B. Thomas Bäckström; Raymond A. Sobel; Kai W. Wucherpfennig; Terry B. Strom; Mohamed Oukka; Vijay K. Kuchroo

Treatment with ex vivo–generated regulatory T cells (T-reg) has been regarded as a potentially attractive therapeutic approach for autoimmune diseases. However, the dynamics and function of T-reg in autoimmunity are not well understood. Thus, we developed Foxp3gfp knock-in (Foxp3gfp.KI) mice and myelin oligodendrocyte glycoprotein (MOG)35–55/IAb (MHC class II) tetramers to track autoantigen-specific effector T cells (T-eff) and T-reg in vivo during experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. MOG tetramer–reactive, Foxp3+ T-reg expanded in the peripheral lymphoid compartment and readily accumulated in the central nervous system (CNS), but did not prevent the onset of disease. Foxp3+ T cells isolated from the CNS were effective in suppressing naive MOG-specific T cells, but failed to control CNS-derived encephalitogenic T-eff that secreted interleukin (IL)-6 and tumor necrosis factor (TNF). Our data suggest that in order for CD4+Foxp3+ T-reg to effectively control autoimmune reactions in the target organ, it may also be necessary to control tissue inflammation.


Nature Immunology | 2002

A functional and structural basis for TCR cross-reactivity in multiple sclerosis

Heather L.E. Lang; Helle Jacobsen; Shinji Ikemizu; Christina Andersson; Karl Harlos; Lars Madsen; Peter Hjorth; Leif Sondergaard; Arne Svejgaard; Kai W. Wucherpfennig; David I. Stuart; John I. Bell; E. Yvonne Jones; Lars Fugger

The multiple sclerosis (MS)-associated HLA major histocompatibility complex (MHC) class II alleles DRB1*1501, DRB5*0101 and DQB1*0602 are in strong linkage disequilibrium, making it difficult to determine which is the principal MS risk gene. Here we show that together the DRB1 and DRB5 loci may influence susceptibility to MS. We demonstrate that a T cell receptor (TCR) from an MS patient recognized both a DRB1*1501-restricted myelin basic protein (MBP) and DRB5*0101-restricted Epstein-Barr virus (EBV) peptide. Crystal structure determination of the DRB5*0101-EBV peptide complex revealed a marked degree of structural equivalence to the DRB1*1501–MBP peptide complex at the surface presented for TCR recognition. This provides structural evidence for molecular mimicry involving HLA molecules. The structural details suggest an explanation for the preponderance of MHC class II associations in HLA-associated diseases.


Nature Immunology | 2001

Structure of a human insulin peptide–HLA-DQ8 complex and susceptibility to type 1 diabetes

Kon Ho Lee; Kai W. Wucherpfennig; Don C. Wiley

The class II major histocompatibility complex (MHC) glycoproteins HLA-DQ8 and HLA-DQ2 in humans and I-Ag7 in nonobese diabetic (NOD) mice are the major risk factors for increased suscepti-bility to type 1 diabetes. Using X-ray crystallography, we have determined the three-dimen-sional structure of DQ8 complexed with an immunodominant peptide from insulin. The similarity of the DQ8, DQ2 and I-Ag7 peptide-binding pockets suggests that diabetes is caused by the same antigen-presentation event(s) in humans and NOD mice. Correlating type 1 diabetes epidemio-logy and MHC sequences with the DQ8 structure suggests that other structural features of the P9 pocket in addi-tion to position 57 contribute to susceptibility to type 1 diabetes.


Cell | 2002

The Organizing Principle in the Formation of the T Cell Receptor-CD3 Complex

Matthew E. Call; Jason Pyrdol; Martin Wiedmann; Kai W. Wucherpfennig

The T cell receptor (TCR) serves a critical function in the immune system and represents one of the most complex receptor structures. A striking feature is the presence of nine highly conserved, potentially charged residues in the transmembrane helices. Previous models have attempted to explain assembly based on pairwise interactions of these residues. Using a novel method for the isolation of intact radiolabeled protein complexes, we demonstrate that one basic and two acidic transmembrane residues are required for the assembly of each of the three signaling dimers with the TCR. This remarkable three-helix arrangement applies to all three assembly steps and represents the organizing principle for the formation of this intricate receptor structure.


Nature Genetics | 1999

A humanized model for multiple sclerosis using HLA-DR2 and a human T-cell receptor

Lars Madsen; Ellen Christina Andersson; Liselotte Jansson; Michelle Krogsgaard; Claus B. Andersen; Jan Engberg; Jack L. Strominger; Arne Svejgaard; Jens Hjorth; Rikard Holmdahl; Kai W. Wucherpfennig; Lars Fugger

Multiple sclerosis (MS) is a complex chronic neurologic disease with a suspected autoimmune pathogenesis. Although there is evidence that the development of MS is determined by both environmental influences and genes, these factors are largely undefined, except for major histocompatibility (MHC) genes. Linkage analyses and association studies have shown that susceptibility to MS is associated with genes in the human histocompatibility leukocyte antigens (HLA) class II region, but the contribution of these genes to MS disease development is less compared with their contribution to disorders such as insulin-dependent diabetes mellitus. Due to the strong linkage disequilibrium in the MHC class II region, it has not been possible to determine which gene(s) is responsible for the genetic predisposition. In transgenic mice, we have expressed three human components involved in T-cell recognition of an MS-relevant autoantigen presented by the HLA-DR2 molecule: DRA*0101/DRB1*1501 (HLA-DR2), an MHC class II candidate MS susceptibility genes found in individuals of European descent; a T-cell receptor (TCR) from an MS-patient-derived T-cell clone specific for the HLA-DR2 bound immunodominant myelin basic protein (MBP) 84–102 peptide; and the human CD4 coreceptor. The amino acid sequence of the MBP 84–102 peptide is the same in both human and mouse MBP. Following administration of the MBP peptide, together with adjuvant and pertussis toxin, transgenic mice developed focal CNS inflammation and demyelination that led to clinical manifestations and disease courses resembling those seen in MS. Spontaneous disease was observed in 4% of mice. When DR2 and TCR double-transgenic mice were backcrossed twice to Rag2 (for recombination-activating gene 2)-deficient mice, the incidence of spontaneous disease increased, demonstrating that T cells specific for the HLA-DR2 bound MBP peptide are sufficient and necessary for development of disease. Our study provides evidence that HLA-DR2 can mediate both induced and spontaneous disease resembling MS by presenting an MBP self-peptide to T cells.


Journal of Clinical Investigation | 2001

Mechanisms for the induction of autoimmunity by infectious agents

Kai W. Wucherpfennig

Activation and clonal expansion of autoreactive lymphocytes is a critical step in the pathogenesis of autoimmune diseases. In experimental models of autoimmunity, disease can be transferred by activated, but not resting, autoreactive T cells (1), indicating that activation of autoreactive T cells is required for the development of autoimmune diseases. Infectious agents have long been considered as possible culprits in the activation of autoreactive T cells. Mechanisms by which an infection can lead to an autoimmune process have been examined in experimental animal models, and these concepts as well as their relevance to human diseases will be discussed here.


Journal of Clinical Investigation | 2003

Ex vivo analysis of human memory CD4 T cells specific for hepatitis C virus using MHC class II tetramers

Cheryl L. Day; Nilufer P. Seth; Michaela Lucas; Heiner Appel; Laurent Gauthier; Georg M. Lauer; Gregory K. Robbins; Zbigniew M. Szczepiorkowski; Deborah Casson; Raymond T. Chung; Shannon Bell; Gillian Harcourt; Bruce D. Walker; Paul Klenerman; Kai W. Wucherpfennig

Containment of hepatitis C virus (HCV) and other chronic human viral infections is associated with persistence of virus-specific CD4 T cells, but ex vivo characterization of circulating CD4 T cells has not been achieved. To further define the phenotype and function of these cells, we developed a novel approach for the generation of tetrameric forms of MHC class II/peptide complexes that is based on the cellular peptide-exchange mechanism. HLA-DR molecules were expressed as precursors with a covalently linked CLIP peptide, which could be efficiently exchanged with viral peptides following linker cleavage. In subjects who spontaneously resolved HCV viremia, but not in those with chronic progressive infection, HCV tetramer-labeled cells could be isolated by magnetic bead capture despite very low frequencies (1:1,200 to 1:111,000) among circulating CD4 T cells. These T cells expressed a set of surface receptors (CCR7+CD45RA-CD27+) indicative of a surveillance function for secondary lymphoid structures and had undergone significant in vivo selection since they utilized a restricted Vbeta repertoire. These studies demonstrate a relationship between clinical outcome and the presence of circulating CD4 T cells directed against this virus. Moreover, they show that rare populations of memory CD4 T cells can be studied ex vivo in human diseases.


Cell | 2008

Regulation of T Cell Receptor Activation by Dynamic Membrane Binding of the CD3ɛ Cytoplasmic Tyrosine-Based Motif

Chenqi Xu; Etienne Gagnon; Matthew E. Call; Jason R. Schnell; Charles D. Schwieters; Christopher V. Carman; James J. Chou; Kai W. Wucherpfennig

Many immune system receptors signal through cytoplasmic tyrosine-based motifs (ITAMs), but how receptor ligation results in ITAM phosphorylation remains unknown. Live-cell imaging studies showed a close interaction of the CD3epsilon cytoplasmic domain of the T cell receptor (TCR) with the plasma membrane through fluorescence resonance energy transfer between a C-terminal fluorescent protein and a membrane fluorophore. Electrostatic interactions between basic CD3epsilon residues and acidic phospholipids enriched in the inner leaflet of the plasma membrane were required for binding. The nuclear magnetic resonance structure of the lipid-bound state of this cytoplasmic domain revealed deep insertion of the two key tyrosines into the hydrophobic core of the lipid bilayer. Receptor ligation thus needs to result in unbinding of the CD3epsilon ITAM from the membrane to render these tyrosines accessible to Src kinases. Sequestration of key tyrosines into the lipid bilayer represents a previously unrecognized mechanism for control of receptor activation.


Cell | 2014

Deconstructing the Peptide-MHC Specificity of T Cell Recognition.

Michael E. Birnbaum; Juan L. Mendoza; Dhruv K. Sethi; Shen Dong; Jacob Glanville; Jessica Dobbins; Engin Özkan; Mark M. Davis; Kai W. Wucherpfennig; K. Christopher Garcia

In order to survey a universe of major histocompatibility complex (MHC)-presented peptide antigens whose numbers greatly exceed the diversity of the T cell repertoire, T cell receptors (TCRs) are thought to be cross-reactive. However, the nature and extent of TCR cross-reactivity has not been conclusively measured experimentally. We developed a system to identify MHC-presented peptide ligands by combining TCR selection of highly diverse yeast-displayed peptide-MHC libraries with deep sequencing. Although we identified hundreds of peptides reactive with each of five different mouse and human TCRs, the selected peptides possessed TCR recognition motifs that bore a close resemblance to their known antigens. This structural conservation of the TCR interaction surface allowed us to exploit deep-sequencing information to computationally identify activating microbial and self-ligands for human autoimmune TCRs. The mechanistic basis of TCR cross-reactivity described here enables effective surveillance of diverse self and foreign antigens without necessitating degenerate recognition of nonhomologous peptides.

Collaboration


Dive into the Kai W. Wucherpfennig's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew E. Call

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vijay K. Kuchroo

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Etienne Gagnon

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge