Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kai Wei Chiang is active.

Publication


Featured researches published by Kai Wei Chiang.


Sensors | 2012

The Development of an UAV Borne Direct Georeferenced Photogrammetric Platform for Ground Control Point Free Applications

Kai Wei Chiang; Meng Lun Tsai; Chien Hsun Chu

To facilitate applications such as environment detection or disaster monitoring, the development of rapid low cost systems for collecting near real time spatial information is very critical. Rapid spatial information collection has become an emerging trend for remote sensing and mapping applications. In this study, a fixed-wing Unmanned Aerial Vehicle (UAV)-based spatial information acquisition platform that can operate in Ground Control Point (GCP) free environments is developed and evaluated. The proposed UAV based photogrammetric platform has a Direct Georeferencing (DG) module that includes a low cost Micro Electro Mechanical Systems (MEMS) Inertial Navigation System (INS)/Global Positioning System (GPS) integrated system. The DG module is able to provide GPS single frequency carrier phase measurements for differential processing to obtain sufficient positioning accuracy. All necessary calibration procedures are implemented. Ultimately, a flight test is performed to verify the positioning accuracy in DG mode without using GCPs. The preliminary results of positioning accuracy in DG mode illustrate that horizontal positioning accuracies in the x and y axes are around 5 m at 300 m flight height above the ground. The positioning accuracy of the z axis is below 10 m. Therefore, the proposed platform is relatively safe and inexpensive for collecting critical spatial information for urgent response such as disaster relief and assessment applications where GCPs are not available.


Sensors | 2013

The Performance Analysis of a Real-Time Integrated INS/GPS Vehicle Navigation System with Abnormal GPS Measurement Elimination

Kai Wei Chiang; Thanh Trung Duong; Jhen Kai Liao

The integration of an Inertial Navigation System (INS) and the Global Positioning System (GPS) is common in mobile mapping and navigation applications to seamlessly determine the position, velocity, and orientation of the mobile platform. In most INS/GPS integrated architectures, the GPS is considered to be an accurate reference with which to correct for the systematic errors of the inertial sensors, which are composed of biases, scale factors and drift. However, the GPS receiver may produce abnormal pseudo-range errors mainly caused by ionospheric delay, tropospheric delay and the multipath effect. These errors degrade the overall position accuracy of an integrated system that uses conventional INS/GPS integration strategies such as loosely coupled (LC) and tightly coupled (TC) schemes. Conventional tightly coupled INS/GPS integration schemes apply the Klobuchar model and the Hopfield model to reduce pseudo-range delays caused by ionospheric delay and tropospheric delay, respectively, but do not address the multipath problem. However, the multipath effect (from reflected GPS signals) affects the position error far more significantly in a consumer-grade GPS receiver than in an expensive, geodetic-grade GPS receiver. To avoid this problem, a new integrated INS/GPS architecture is proposed. The proposed method is described and applied in a real-time integrated system with two integration strategies, namely, loosely coupled and tightly coupled schemes, respectively. To verify the effectiveness of the proposed method, field tests with various scenarios are conducted and the results are compared with a reliable reference system.


Sensors | 2011

Direct Sensor Orientation of a Land-Based Mobile Mapping System

Jiann Yeou Rau; Ayman Habib; Ana Paula Kersting; Kai Wei Chiang; Ki In Bang; Yi Hsing Tseng; Yu Hua Li

A land-based mobile mapping system (MMS) is flexible and useful for the acquisition of road environment geospatial information. It integrates a set of imaging sensors and a position and orientation system (POS). The positioning quality of such systems is highly dependent on the accuracy of the utilized POS. This limitation is the major drawback due to the elevated cost associated with high-end GPS/INS units, particularly the inertial system. The potential accuracy of the direct sensor orientation depends on the architecture and quality of the GPS/INS integration process as well as the validity of the system calibration (i.e., calibration of the individual sensors as well as the system mounting parameters). In this paper, a novel single-step procedure using integrated sensor orientation with relative orientation constraint for the estimation of the mounting parameters is introduced. A comparative analysis between the proposed single-step and the traditional two-step procedure is carried out. Moreover, the estimated mounting parameters using the different methods are used in a direct geo-referencing procedure to evaluate their performance and the feasibility of the implemented system. Experimental results show that the proposed system using single-step system calibration method can achieve high 3D positioning accuracy.


Sensors | 2013

GPS/MEMS INS Data Fusion and Map Matching in Urban Areas

Hone Jay Chu; Guang Je Tsai; Kai Wei Chiang; Thanh Trung Duong

This paper presents an evaluation of the map-matching scheme of an integrated GPS/INS system in urban areas. Data fusion using a Kalman filter and map matching are effective approaches to improve the performance of navigation system applications based on GPS/MEMS IMUs. The study considers the curve-to-curve matching algorithm after Kalman filtering to correct mismatch and eliminate redundancy. By applying data fusion and map matching, the study easily accomplished mapping of a GPS/INS trajectory onto the road network. The results demonstrate the effectiveness of the algorithms in controlling the INS drift error and indicate the potential of low-cost MEMS IMUs in navigation applications.


Sensors | 2012

On-line smoothing for an integrated navigation system with low-cost MEMS inertial sensors.

Kai Wei Chiang; Thanh Trung Duong; Jhen Kai Liao; Ying Chih Lai; Chin Chia Chang; Jia Ming Cai; Shih Ching Huang

The integration of the Inertial Navigation System (INS) and the Global Positioning System (GPS) is widely applied to seamlessly determine the time-variable position and orientation parameters of a system for navigation and mobile mapping applications. For optimal data fusion, the Kalman filter (KF) is often used for real-time applications. Backward smoothing is considered an optimal post-processing procedure. However, in current INS/GPS integration schemes, the KF and smoothing techniques still have some limitations. This article reviews the principles and analyzes the limitations of these estimators. In addition, an on-line smoothing method that overcomes the limitations of previous algorithms is proposed. For verification, an INS/GPS integrated architecture is implemented using a low-cost micro-electro-mechanical systems inertial measurement unit and a single-frequency GPS receiver. GPS signal outages are included in the testing trajectories to evaluate the effectiveness of the proposed method in comparison to conventional schemes.


Applied Soft Computing | 2011

An ANN embedded RTS smoother for an INS/GPS integrated Positioning and Orientation System

Kai Wei Chiang; Yun Wen Huang; Chia Yuan Li; Hsiu Wen Chang

Digital mobile mapping, which integrates digital imaging with direct geo-referencing, has developed rapidly over the past fifteen years. The direct geo-referencing is the determination of time variable position and orientation parameters for a mobile digital imager. The most common technologies used for this purpose today are satellite positioning by GPS and inertial navigation using an IMU. They are usually integrated in such a way that the GPS receiver is the main position sensor, while the IMU is the main orientation sensor. KF is considered the optimal estimation tool for teal-time INS/GPS integrated kinematic positioning and orientation determination. In post-mission processing, on the other hand, data from the whole mission can be used to estimate the trajectory. When filtering is used in the first step, an optimal smoothing algorithm can be applied to achieve higher accuracy for mobile mapping applications. An intelligent and hybrid scheme consisting of an ANN and KF is proposed to overcome the limitations of KF and to improve the performance of an INS/GPS integrated system from a previous study. However, the accuracy requirements of general mobile mapping applications cannot be achieved easily even by using an ANN-KF scheme. Therefore, this study proposes an ANN embedded RTS backward smoother to enhance the overall accuracy of POS parameters for a tactical grade INS/GPS integrated system in a post-mission mode. Combing the tactical grade INS/GPS integrated system and intelligent POS scheme proposed in this study, a cheap but reasonably accurate POS can be anticipated.


Sensors | 2015

The performance analysis of the map-aided fuzzy decision tree based on the pedestrian dead reckoning algorithm in an indoor environment

Kai Wei Chiang; Jhen Kai Liao; Guang Je Tsai; Hsiu Wen Chang

Hardware sensors embedded in a smartphone allow the device to become an excellent mobile navigator. A smartphone is ideal for this task because its great international popularity has led to increased phone power and since most of the necessary infrastructure is already in place. However, using a smartphone for indoor pedestrian navigation can be problematic due to the low accuracy of sensors, imprecise predictability of pedestrian motion, and inaccessibility of the Global Navigation Satellite System (GNSS) in some indoor environments. Pedestrian Dead Reckoning (PDR) is one of the most common technologies used for pedestrian navigation, but in its present form, various errors tend to accumulate. This study introduces a fuzzy decision tree (FDT) aided by map information to improve the accuracy and stability of PDR with less dependency on infrastructure. First, the map is quickly surveyed by the Indoor Mobile Mapping System (IMMS). Next, Bluetooth beacons are implemented to enable the initializing of any position. Finally, map-aided FDT can estimate navigation solutions in real time. The experiments were conducted in different fields using a variety of smartphones and users in order to verify stability. The contrast PDR system demonstrates low stability for each case without pre-calibration and post-processing, but the proposed low-complexity FDT algorithm shows good stability and accuracy under the same conditions.


Sensors | 2015

New Calibration Method Using Low Cost MEM IMUs to Verify the Performance of UAV-Borne MMS Payloads

Kai Wei Chiang; Meng Lun Tsai; El Sheimy Naser; Ayman Habib; Chien Hsun Chu

Spatial information plays a critical role in remote sensing and mapping applications such as environment surveying and disaster monitoring. An Unmanned Aerial Vehicle (UAV)-borne mobile mapping system (MMS) can accomplish rapid spatial information acquisition under limited sky conditions with better mobility and flexibility than other means. This study proposes a long endurance Direct Geo-referencing (DG)-based fixed-wing UAV photogrammetric platform and two DG modules that each use different commercial Micro-Electro Mechanical Systems’ (MEMS) tactical grade Inertial Measurement Units (IMUs). Furthermore, this study develops a novel kinematic calibration method which includes lever arms, boresight angles and camera shutter delay to improve positioning accuracy. The new calibration method is then compared with the traditional calibration approach. The results show that the accuracy of the DG can be significantly improved by flying at a lower altitude using the new higher specification hardware. The new proposed method improves the accuracy of DG by about 20%. The preliminary results show that two-dimensional (2D) horizontal DG positioning accuracy is around 5.8 m at a flight height of 300 m using the newly designed tactical grade integrated Positioning and Orientation System (POS). The positioning accuracy in three-dimensions (3D) is less than 8 m.


Remote Sensing | 2014

The Performance Analysis of the Tactical Inertial Navigator Aided by Non-GPS Derived References

Kai Wei Chiang; Cheng An Lin; Thanh Trung Duong

The Inertial Navigation System (INS) is now widely applied in many navigation and mobile mapping applications due to its high sampling rates, high accuracy in short-term cases, and no limitations caused by interference or signal obstructions. In addition, the INS can continuously provide the position, velocity and attitude of a vehicle. Conversely, the disadvantage of the stand-alone INS is that its accuracy degrades rapidly with time because of the accumulations of systematic errors and noises from accelerometers and gyroscopes. Therefore, this research aims to implement an integrated system with specific 3D position updates using non-GPS derived references to aid a tactical inertial navigator to provide seamless navigation solutions in the specific area without Global Positioning System (GPS) signals. An Extended Kalman Filter (EKF) is applied as the core estimator to provide superior performance and output the navigation solutions in real-time. The INS is updated by position from references such as the digital map, land mark, Digital Terrain Model (DTM) as well as waypoint to improve navigation accuracy in the long-term. In order to evaluate the performance of the proposed algorithm, field tests including land scenario in freeway and airborne scenario with an unmanned aerial test platform have been conducted. The preliminary results demonstrate that the proposed algorithm with non-GPS derived references aiding from digital map and waypoint for onboard aerial camera trigger to provide uninterrupted navigation solutions and better performance which can achieve the meter-level accuracy without GPS aiding for land and aerial scenarios, respectively.


Sensors | 2015

A Feasibility Analysis of Land-Based SINS/GNSS Gravimetry for Groundwater Resource Detection in Taiwan

Kai Wei Chiang; Cheng An Lin; Chung Yen Kuo

The integration of the Strapdown Inertial Navigation System and Global Navigation Satellite System (SINS/GNSS) has been implemented for land-based gravimetry and has been proven to perform well in estimating gravity. Based on the mGal-level gravimetry results, this research aims to construct and develop a land-based SINS/GNSS gravimetry device containing a navigation-grade Inertial Measurement Unit. This research also presents a feasibility analysis for groundwater resource detection. A preliminary comparison of the kinematic velocities and accelerations using multi-combination of GNSS data including Global Positioning System, Global Navigation Satellite System, and BeiDou Navigation Satellite System, indicates that three-system observations performed better than two-system data in the computation. A comparison of gravity derived from SINS/GNSS and measured using a relative gravimeter also shows that both agree reasonably well with a mean difference of 2.30 mGal. The mean difference between repeat measurements of gravity disturbance using SINS/GNSS is 2.46 mGal with a standard deviation of 1.32 mGal. The gravity variation because of the groundwater at Pingtung Plain, Taiwan could reach 2.72 mGal. Hence, the developed land-based SINS/GNSS gravimetry can sufficiently and effectively detect groundwater resources.

Collaboration


Dive into the Kai Wei Chiang's collaboration.

Top Co-Authors

Avatar

Thanh Trung Duong

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Guang Je Tsai

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Yun Wen Huang

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Cheng An Lin

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Chien Hsun Chu

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Jhen Kai Liao

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Meng Lun Tsai

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chung Yen Kuo

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Chin Chia Chang

Industrial Technology Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge