Kai-Wun Yeh
National Taiwan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kai-Wun Yeh.
Plant Molecular Biology | 1997
Kai-Wun Yeh; Jen-Chih Chen; Mei-in Lin; Yih-Ming Chen; Chu-Yung Lin
Sporamin accounts for about 60% to 80% of total soluble protein in sweet potato tubers, and the predicted protein sequence of sporamin shares significant amino acid sequence identity with some Kunitz-type trypsin inhibitors. We constructed three recombinant plasmids with cDNAs that encode preprosporamin, prosporamin, and sporamin, and these three were expressed in Escherichia coli cells as fusion proteins. All three forms of sporamin expressed in E. coli were shown to have strong inhibitory activity to trypsin in vitro, suggesting that post-translational modifications are not essential for trypsin inhibitory activity. Northern blot analysis showed that sporamin transcripts could be systemically induced in leaf tissue of sweet potato by wounding. Therefore, sporamin may have a defense role as a protease inhibitor, in addition to its role as a storage protein.
Plant Cell Reports | 1997
Kai-Wun Yeh; Mei-in Lin; S.-J. Tuan; Yi-Hsuan Chen; C.-J. Lin; S.-S. Kao
Abstract A sweet potato (Ipomoea batatas cv. Tainong 57) trypsin inhibitor gene was introduced into tobacco plants (Nicotiana tabaccum cv. W38) by Agrobacterium tumefaciens– mediated transformation. From 30 independent transformants, three lines with high level of expression were further analyzed. The trypsin inhibitor gene, under control of the 35S CaMV promoter, led to the production of the trypsin inhibitor proteins up to 0.2% of the total protein. In insecticidal bioassays of transgenic tobacco plants, larval, growth of Spodoptera litura (F.), the tobacco cutworm, was severely retarded as compared to their growth on control plants. This observation implied that expression of sweet potato trypsin inhibitor can provide an efficient method for crop protection.
Plant Biotechnology Journal | 2010
Rajendran Senthilkumar; Chiu-Ping Cheng; Kai-Wun Yeh
Protease inhibitors provide a promising means of engineering plant resistance against attack by insects and pathogens. Sporamin (trypsin inhibitor) from sweet potato and CeCPI (phytocystatin) from taro were stacked in a binary vector, using pMSPOA (a modified sporamin promoter) to drive both genes. Transgenic tobacco lines of T0 and T1 generation with varied inhibitory activity against trypsin and papain showed resistance to both insects and phytopathogens. Larvae of Helicoverpa armigera that ingested tobacco leaves either died or showed delayed growth and development relative to control larvae. Transgenic tobacco-overexpressing the stacked genes also exhibited strong resistance against bacterial soft rot disease caused by Erwinia carotovora and damping-off disease caused by Pythium aphanidermatum. Thus, stacking protease-inhibitor genes, driven by the wound and pathogen responsive pMSPOA promoter, is an effective strategy for engineering crops to resistance against insects and phytopathogens.
Molecular Plant-microbe Interactions | 2011
Yin-Chen Lee; Joy Michal Johnson; Ching-Te Chien; Chao Sun; Daguang Cai; Binggan Lou; Kai-Wun Yeh
Piriformospora indica, an endophytic fungus of the order Sebacinales, interacts with the roots of a large variety of plant species. We compared the interaction of this fungus with Chinese cabbage (Brassica campestris subsp. chinensis) and Arabidopsis seedlings. The development of shoots and roots of Chinese cabbage seedlings was strongly promoted by P. indica and the fresh weight of the seedlings increased approximately twofold. The strong stimulation of root hair development resulted in a bushy root phenotype. The auxin level in the infected Chinese cabbage roots was twofold higher compared with the uncolonized controls. Three classes of auxin-related genes, which were upregulated by P. indica in Chinese cabbage roots, were isolated from a double-subtractive expressed sequence tag library: genes for proteins related to cell wall acidification, intercellular auxin transport carrier proteins such as AUX1, and auxin signal proteins. Overexpression of B. campestris BcAUX1 in Arabidopsis strongly promoted growth and biomass production of Arabidopsis seedlings and plants; the roots were highly branched but not bushy when compared with colonized Chinese cabbage roots. This suggests that BcAUX1 is a target of P. indica in Chinese cabbage. P. indica also promoted growth of Arabidopsis seedlings but the auxin levels were not higher and auxin genes were not upregulated, implying that auxin signaling is a more important target of P. indica in Chinese cabbage than in Arabidopsis. The fungus also stimulated growth of Arabidopsis aux1 and aux1/axr4 and rhd6 seedlings. Furthermore, a component in an exudate fraction from P. indica but not auxin stimulated growth of Chinese cabbage and Arabidopsis seedlings. We propose that activation of auxin biosynthesis and signaling in the roots might be the cause for the P. indica-mediated growth phenotype in Chinese cabbage.
Plant Cell Reports | 1998
L.-C. Ding; Ching-yeh Hu; Kai-Wun Yeh; P.-J. Wang
Agrobacterium-mediated transformation was used to introduce a trypsin inhibitor gene into Taiwan cauliflower (Brassica oleracea var. botrytis L.) cultivars. The TI gene was isolated from a well-adapted Taiwan sweet potato cultivar and was expected to be especially effective in combating local pests. In vitro regeneration studies indicated that 4-day-old cauliflower seedling hypocotyl segments, pretreated with 2,4-dichlorophenoxyacetic acid for 3 days and incubated on a silver-ion-containing shoot induction medium, gave regeneration rates greater than 95%. Optimum transformation conditions were determined. G418 selection at 15 mg/l was initiated 1 week after cocultivation, and the dose was doubled 1 week later. Over 100 putative transgenic plants were produced. Transgenic status was confirmed by in vitro TI activity, and Southern and Western hybridization assays. The transgenic plants demonstrated in planta resistance to local insects to which the control plants were vulnerable.
Plant Molecular Biology | 2003
Daguang Cai; Tim Thurau; Yanyan Tian; Tina Lange; Kai-Wun Yeh; Christian Jung
Sporamin, a sweet potato tuberous storage protein, is a Kunitz-type trypsin inhibitor. Its capability of conferring insect-resistance on transgenic tobacco and cauliflower has been confirmed. To test its potential as an anti-feedant for the beet cyst nematode (Heterodera schachtii Schm.), the sporamin gene SpTI-1 was introduced into sugar beet (Beta vulgaris L.) by Agrobacterium rhizogenes-mediated transformation. Twelve different hairy root clones expressing sporamin were selected for studying nematode development. Of these, 8 hairy root clones were found to show significant efficiency in inhibiting the growth and development of the female nematodes whereas 4 root clones did not show any inhibitory effects even though the SpTI-1 gene was regularly expressed in all of the tested hairy roots as revealed by northern and western analyses. Inhibition of nematode development correlated with trypsin inhibitor activity but not with the amount of sporamin expressed in hairy roots. These data demonstrate that the trypsin inhibitor activity is the critical factor for inhibiting growth and development of cyst nematodes in sugar beet hairy roots expressing the sporamin gene. Hence, the sweet potato sporamin can be used as a new and effective anti-feedant for controlling cyst nematodes offering an alternative strategy for establishing nematode resistance in crops.
Plant Molecular Biology | 2008
Chung-Yi Chiou; Kai-Wun Yeh
The yellow coloration pattern in Oncidium floral lip associated with red sepal and petal tissues is an ideal model to study coordinate regulation of anthocyanin synthesis. In this study, chromatography analysis revealed that the red coloration in floral tissues was composed of malvidin-3-O-galactoside, peonidin-3-O-glucoside, delphinidin-3-O-glucoside and cyanidin-3-O-glucoside compounds. By contrary, these pigments were not detected in yellow lip tissue. Four key genes involved in anthocyanin biosynthetic pathway, i.e. chalcone synthase (OgCHS), chalcone isomerase (OgCHI), dihydroflavonol 4-reductase (OgDFR) andanthocyanidin synthase (OgANS) were isolated and their expression patterns were characterized. Northern blot analysis confirmed that although they are active during floral development, OgCHI and OgDFR genes are specifically down-regulated in yellow lip tissue. Bombardment with OgCHI and OgDFR genes into lip tissue driven by a flower-specific promoter, Pchrc (chromoplast-specific carotenoid-associated gene), demonstrated that transient expression of these two genes resulted in anthocyanin production in yellow lip. Further analysis of a R2R3 MYB transcription factor, OgMYB1, revealed that although it is actively expressed during floral development, it is not expressed in yellow lip tissue. Transient expression of OgMYB1 in lip tissues by bombardment can also induce formation of red pigments through the activation of OgCHI and OgDFR transcription. These results demonstrate that differential expression of OgMYB1 is critical to determine the color pattern of floral organ in Oncidium Gower Ramsey.
Plant Science | 2001
Shu-Jen Wang; Kai-Wun Yeh; Chia-Yin Tsai
Studies on regulations of transitory starch synthesis and degradation in the leaf tissue are important for understanding how carbons could be distributed effectively from the source to sink tissues. Therefore, expressions of starch granule-bound starch synthase I (GBSSI) gene in leaves of sweet potato were studied under different photoperiodic conditions and various sugar treatments. Results indicated that accumulations of GBSSI mRNA and its protein were controlled by an endogenous biological clock. Starch accumulations in leaves also showed a pattern characteristic of circadian rhythm. In addition to circadian clock, sucrose also played an important role in regulating GBSSI mRNA accumulations. Although sucrose stimulated the transcription of GBSSI, it had no effect on the rhythmic pattern of GBSSI gene expressions. Protein phosphorylation/dephosphorylation were involved in the sucrose-related signal transduction for GBSSI gene expressions. However, the sugar sensing for regulation of GBSSI was independent of the hexokinase-mediated pathway. In conclusion, the GBSSI gene expression in leaves of sweet potato appears to be regulated by two independent pathways. First, light is responsible for setting up biological clock(s) that control the circadian expression of GBSSI gene; and second, light plays an indirect signal to enhance GBSSI mRNA accumulations mediated by the photosynthetic product, sucrose.
Plant Cell Reports | 2010
Yuan-Li Chan; Ai-Hwa Yang; Jen-Tzu Chen; Kai-Wun Yeh; Ming-Tsair Chan
Plant-parasitic nematodes are a major pest of many plant species and cause global economic loss. A phytocystatin gene, Colocasia esculenta cysteine proteinase inhibitor (CeCPI), isolated from a local taro Kaosiang No. 1, and driven by a CaMV35S promoter was delivered into CLN2468D, a heat-tolerant cultivar of tomato (Solanum lycopersicum). When infected with Meloidogyneincognita, one of root-knot nematode (RKN) species, transgenic T1 lines overexpressing CeCPI suppressed gall formation as evidenced by a pronounced reduction in gall numbers. In comparison with wild-type plants, a much lower proportion of female nematodes without growth retardation was observed in transgenic plants. A decrease of RKN egg mass in transgenic plants indicated seriously impaired fecundity. Overexpression of CeCPI in transgenic tomato has inhibitory functions not only in the early RKN infection stage but also in the production of offspring, which may result from intervention in sex determination.
Plant Biotechnology Journal | 2014
Peng-Jen Chen; Rajendran Senthilkumar; Wann-Neng Jane; Yong He; Zhihong Tian; Kai-Wun Yeh
Plastid engineering provides several advantages for the next generation of transgenic technology, including the convenient use of transgene stacking and the generation of high expression levels of foreign proteins. With the goal of generating transplastomic plants with multiresistance against both phytopathogens and insects, a construct containing a monocistronic patterned gene stack was transformed into Nicotiana benthamiana plastids harbouring sweet potato sporamin, taro cystatin and chitinase from Paecilomyces javanicus. Transplastomic lines were screened and characterized by Southern/Northern/Western blot analysis for the confirmation of transgene integration and respective expression level. Immunogold localization analyses confirmed the high level of accumulation proteins that were specifically expressed in leaf and root plastids. Subsequent functional bioassays confirmed that the gene stacks conferred a high level of resistance against both insects and phytopathogens. Specifically, larva of Spodoptera litura and Spodoptera exigua either died or exhibited growth retardation after ingesting transplastomic plant leaves. In addition, the inhibitory effects on both leaf spot diseases caused by Alternaria alternata and soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum were markedly observed. Moreover, tolerance to abiotic stresses such as salt/osmotic stress was highly enhanced. The results confirmed that the simultaneous expression of sporamin, cystatin and chitinase conferred a broad spectrum of resistance. Conversely, the expression of single transgenes was not capable of conferring such resistance. To the best of our knowledge, this is the first study to demonstrate an efficacious stacked combination of plastid-expressed defence genes which resulted in an engineered tolerance to various abiotic and biotic stresses.