Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kai-Yang Lin is active.

Publication


Featured researches published by Kai-Yang Lin.


The Astrophysical Journal | 2013

SUNYAEV-ZEL'DOVICH-MEASURED PRESSURE PROFILES FROM THE BOLOCAM X-RAY/SZ GALAXY CLUSTER SAMPLE

Jack Sayers; Nicole G. Czakon; A. Mantz; S. R. Golwala; Silvia Ameglio; Thomas P. Downes; Patrick M. Koch; Kai-Yang Lin; Ben J Maughan; Sandor M. Molnar; Leonidas A. Moustakas; Tony Mroczkowski; E. Pierpaoli; Jennifer A. Shitanishi; Seth Siegel; Keiichi Umetsu; N. van der Pyl

We describe Sunyaev-Zel’dovich (SZ) effect measurements and analysis of the intracluster medium (ICM) pressure profiles of a set of 45 massive galaxy clusters imaged using Bolocam at the Caltech Submillimeter Observatory. We deproject the average pressure profile of our sample into 13 logarithmically spaced radial bins between 0.07R500 and 3.5R500, and we find that a generalized Navarro, Frenk, and White (gNFW) profile describes our data with sufficient goodness-of-fit and best-fit parameters (C500, �, �, , P0 = 1.18, 0.86, 3.67, 0.67, 4.29). We use X-ray data to define cool-core and disturbed subsamples of clusters, and we constrain the average pressure profiles of each of these subsamples. We find that, given the precision of our data, the average pressure profiles of disturbed and cool-core clusters are consistent with one another at R & 0.15R500, with cool-core systems showing indications of higher pressure at R . 0.15R500. In addition, for the first time, we place simultaneous constraints on the mass scaling of cluster pressure profiles, their ensemble mean profile, and their radius-dependent intrinsic scatter between 0.1R500 and 2.0R500. The scatter among profiles is minimized at radii between ≃ 0.2R500 and ≃ 0.5R500, with a value of ≃ 20%. These results for the intrinsic scatter are largely consistent with previous analyses, most of which have relied heavily on X-ray derived pressures of clusters at significantly lower masses and redshifts compared to our sample. Therefore, our data provide further evidence that cluster pressure profiles are largely universal with scatter of ≃ 20–40% about the universal profile over a wide range of masses and redshifts. Subject headings: galaxies: clusters: general — galaxies: clusters: intracluster medium


The Astrophysical Journal | 2009

The AMiBA Hexapod Telescope Mount

Patrick M. Koch; M. J. Kesteven; Hiroaki Nishioka; Homin Jiang; Kai-Yang Lin; Keiichi Umetsu; Yau-De Huang; Philippe Raffin; Ke-Jung Chen; Fabiola Ibanez-Romano; Guillaume Chereau; Chih-Wei Locutus Huang; Ming-Tang Chen; Paul T. P. Ho; Konrad Pausch; Klaus Willmeroth; Pablo Altamirano; Chia-Hao Chang; Shu-Hao Chang; Su-Wei Chang; Chih-Chiang Han; Derek Kubo; Chao-Te Li; Yu-Wei Liao; Guo-Chin Liu; Pierre Martin-Cocher; Peter Oshiro; Fu-Cheng Wang; Tashun Wei; Jiun-Huei Proty Wu

The Array for Microwave Background Anisotropy (AMiBA) is the largest hexapod astronomical telescope in current operation. We present a description of this novel hexapod mount with its main mechanical components—the support cone, universal joints, jack screws, and platform—and outline the control system with the pointing model and the operating modes that are supported. The AMiBA hexapod mount performance is verified based on optical pointing tests and platform photogrammetry measurements. The photogrammetry results show that the deformations in the inner part of the platform are less than 120 μm rms. This is negligible for optical pointing corrections, radio alignment, and radio phase errors for the currently operational seven-element compact configuration. The optical pointing error in azimuth and elevation is successively reduced by a series of corrections to about 0 4 rms which meets our goal for the seven-element target specifications.


The Astrophysical Journal | 2004

Effects of Preheated Clusters on the Cosmic Microwave Background Spectrum

Kai-Yang Lin; Tak-Pong Woo; Yao-Huan Tseng; Lihwai Lin; Tzihong Chiueh

Mounting evidence from x-ray observations reveals that bound objects should receive some form of energy in the past injected from non-gravitaional sources. We report that an instantaneous heating scheme, for which gases in dense regions were subjected to a temperature jump of 1keV at z = 2 whereas those in rarified regions remained intact, can produce bound objects obeying the observed mass-temperature and luminosity-temperature relations. Such preheating lowers the peak Sunyaev-Zeldovich (SZ) power by a factor of 2 and exacerbates the need for the normalization of matter fluctuations σ8 to assume an extreme high value (∼ 1.1) for the SZ signals to account for the excess anisotropy on 5-arcminute scale detected by the Cosmic Background Imager in the cosmic microwave background radiation. Subject headings: cosmology: theory – cosmic microwave background – intergalactic medium


The Astrophysical Journal | 2010

AMiBA WIDEBAND ANALOG CORRELATOR

Chao-Te Li; Derek Kubo; Warwick E. Wilson; Kai-Yang Lin; Ming-Tang Chen; Paul T. P. Ho; Chung-Cheng Chen; Chih-Chiang Han; Peter Oshiro; Pierre Martin-Cocher; Chia-Hao Chang; Shu-Hao Chang; Pablo Altamirano; Homin Jiang; Tzi-Dar Chiueh; Chun-Hsien Lien; Huei Wang; Ray-Ming Wei; Chia-Hsiang Yang; J. B. Peterson; Su-Wei Chang; Yau-De Huang; Yuh-Jing Hwang; M. J. Kesteven; Patrick M. Koch; Guo-Chin Liu; Hiroaki Nishioka; Keiichi Umetsu; Tashun Wei; Jiun-Huei Proty Wu

A wideband analog correlator has been constructed for the Yuan-Tseh Lee Array for Microwave Background Anisotropy. Lag correlators using analog multipliers provide large bandwidth and moderate frequency resolution. Broadband intermediate frequency distribution, back-end signal processing, and control are described. Operating conditions for optimum sensitivity and linearity are discussed. From observations, a large effective bandwidth of around 10 GHz has been shown to provide sufficient sensitivity for detecting cosmic microwave background variations.


Proceedings of SPIE | 2006

Progress of the array of microwave background anisotropy (AMiBA)

Philippe Raffin; Patrick M. Koch; Yau-De Huang; Chia-Hao Chang; Joshua Chang; Ming-Tang Chen; Ke-Yung Chen; Paul T. P. Ho; Chih-Wie Huang; Fabiola Ibañez Roman; Homin Jiang; M. J. Kesteven; Kai-Yang Lin; Guo-Chin Liu; Hiroaki Nishioka; Keiichi Umetsu

The Academia Sinica, Institute for Astronomy and Astrophysics (ASIAA) is installing the AMiBA interferometric array telescope at the Mauna Loa Observatory, Hawaii. The 6-meter carbon fiber fully steerable platform is mounted on the Hexapod Mount. After integration and equipment with dummy weights, the platform has been measured by photogrammetry to verify its behavior predicted by Finite Element Analysis. The Hexapod servo control is now operational and equipment of the platform with the initial 7 60-cm dishes, the correlator and electronics is underway. Pointing has started with the aid of the optical telescope. We present the status of the telescope after the servo and initial pointing tests have been carried out. We also present the results of platform measurements by photogrammetry.


Modern Physics Letters A | 2004

THE AMIBA PROJECT

Paul T. P. Ho; Ming-Tang Chen; Tzi-Dar Chiueh; Tzihong Chiueh; Tah-Hsiung Chu; Homin Jiang; Patrick M. Koch; Derek Kubo; Chao-Te Li; M. J. Kesteven; Kai-Yang Lin; Guo-Chin Liu; K. Y. Lo; Cheng-Jiun Ma; Robert N. Martin; Kin-Wang Ng; Hiroaki Nishioka; Ferdinand Patt; J. B. Peterson; Philippe Raffin; Huei Wang; Yuh-Jing Hwang; Keiichi Umetsu; Jiun-Huei Proty Wu

The Array for Microwave Background Anisotropy is a 7-element interferometer to be sited on Mauna Loa, Hawaii. The seven 1.2m telescopes are mounted on a 6-meter platform, and operates at 3mm wavelength. At the time of this meeting, the telescope is under construction at the Vertex factory in Germany. It is due to be delivered in the middle of 2004. A 2-element prototype instrument has already been deployed to Mauna Loa where initial tests are underway.


Publications of the Astronomical Society of the Pacific | 2011

1.2 m Shielded Cassegrain Antenna for Close-Packed Radio Interferometer

Patrick M. Koch; Philippe Raffin; Yau-De Huang; Ming-Tang Chen; Chih-Chiang Han; Kai-Yang Lin; Pablo Altamirano; Christophe Granet; Paul T. P. Ho; Chih-Wei L. Huang; M. J. Kesteven; Chao-Te Li; Yu-Wei Liao; Guo-Chin Liu; Hiroaki Nishioka; Ching-Long Ong; Peter Oshiro; Keiichi Umetsu; Fu-Cheng Wang; Jiun-Huei Proty Wu

Interferometric millimeter observations of the cosmic microwave background and clusters of galaxies with arcminute resolutions require antenna arrays with short spacings. Having all antennas co-mounted on a single steerable platform sets limits to the overall weight. A 25 kg lightweight novel carbon-fiber design for a 1.2 m diameter Cassegrain antenna is presented. The finite element analysis predicts excellent structural behavior under gravity, wind, and thermal load. The primary- and secondary-mirror surfaces are aluminum-coated with a thin TiO2 top layer for protection. A low beam sidelobe level is achieved with a Gaussian feed-illumination pattern with edge taper, designed based on feed-horn antenna simulations and verified in a far-field beam-pattern measurement. A shielding baffle reduces interantenna coupling to below ~-135 dB. The overall antenna efficiency, including a series of efficiency factors, is estimated to be around 60%, with major losses coming from the feed spillover and secondary blocking. With this new antenna, a detection rate of about 50 clusters yr-1 is anticipated in a 13-element array operation.


Proceedings of SPIE | 2008

Platform deformation refined pointing and phase correction for the AMiBA hexapod telescope

Patrick M. Koch; M. J. Kesteven; Yu-Yen Chang; Yau-De Huang; Philippe Raffin; Ke-Yung Chen; Guillaume Chereau; Ming-Tang Chen; Paul T. P. Ho; Chih-Wie Huang; Fabiola Ibanez-Romano; Homin Jiang; Yu-Wei Liao; Kai-Yang Lin; Guo-Chin Liu; Sandor M. Molnar; Hiroaki Nishioka; Keiichi Umetsu; Fu-Cheng Wang; Jiun-Huei Proty Wu; Pablo Altamirano; Chia-Hao Chang; Shu-Hao Chang; Su-Wei Chang; Chi-Chiang Han; Derek Kubo; Chao-Te Li; Pierre Martin-Cocher; Peter Oshiro

The Array for Microwave Background Anisotropy (AMiBA) is a radio interferometer for research in cosmology, currently operating 7 0.6m diameter antennas co-mounted on a 6m diameter platform driven by a hexapod mount. AMiBA is currently the largest hexapod telescope. We briefly summarize the hexapod operation with the current pointing error model. We then focus on the upcoming 13-element expansion with its potential difficulties and solutions. Photogrammetry measurements of the platform reveal deformations at a level which can affect the optical pointing and the receiver radio phase. In order to prepare for the 13-element upgrade, two optical telescopes are installed on the platform to correlate optical pointing tests. Being mounted on different locations, the residuals of the two sets of pointing errors show a characteristic phase and amplitude difference as a function of the platform deformation pattern. These results depend on the telescopes azimuth, elevation and polarization position. An analytical model for the deformation is derived in order to separate the local deformation induced error from the real hexapod pointing error. Similarly, we demonstrate that the deformation induced radio phase error can be reliably modeled and calibrated, which allows us to recover the ideal synthesized beam in amplitude and shape of up to 90% or more. The resulting array efficiency and its limits are discussed based on the derived errors.


The Astrophysical Journal | 2017

The Pan-STARRS1 Medium-deep Survey: Star Formation Quenching in Group and Cluster Environments

Hung-Yu Jian; Lihwai Lin; Kai-Yang Lin; S. Foucaud; Chin-Wei Chen; Tzihong Chiueh; Richard G. Bower; Shaun Cole; W. P. Chen; W. S. Burgett; Peter W. Draper; H. Flewelling; M. Huber; N. Kaiser; R.-P. Kudritzki; E. A. Magnier; N. Metcalfe; R. J. Wainscoat; C. Waters

We make use of a catalog of 1600 Pan-STARRS1 groups produced by the probability friends-of-friends algorithm to explore how the galaxy properties, i.e. the specific star formation rate (SSFR) and quiescent fraction, depend on stellar mass and group-centric radius. The work is the extension of Lin et al. (2014). In this work, powered by a stacking technique plus a background subtraction for contamination removal, a finer correction and more precise results are obtained than in our previous work. We find that while the quiescent fraction increases with decreasing group-centric radius the median SSFRs of star-forming galaxies in groups at fixed stellar mass drop slightly from the field toward the group center. This suggests that the major quenching process in groups is likely a fast mechanism. On the other hand, a reduction in SSFRs by ~0.2 dex is seen inside clusters as opposed to the field galaxies. If the reduction is attributed to the slow quenching effect, the slow quenching process acts dominantly in clusters. In addition, we also examine the density-color relation, where the density is defined by using a sixth-nearest neighbor approach. Comparing the quiescent fractions contributed from the density and radial effect, we find that the density effect dominates over the massive group or cluster galaxies, and the radial effect becomes more effective in less massive galaxies. The results support mergers and/or starvation as the main quenching mechanisms in the group environment, while harassment and/or starvation dominate in clusters.


The Astrophysical Journal | 2016

AMiBA: Cluster Sunyaev-Zel'dovich Effect Observations with the Expanded 13-Element Array

Kai-Yang Lin; Hiroaki Nishioka; Fu-Cheng Wang; Chih-Wei Locutus Huang; Yu-Wei Liao; Jiun-Huei Proty Wu; Patrick M. Koch; Keiichi Umetsu; Ming-Tang Chen; Shun-Hsiang Chan; Shu-Hao Chang; Wen-Hsuan Lucky Chang; Tai-An Cheng; Hoang Ngoc Duy; Szu-Yuan Fu; Chih-Chiang Han; Solomon Ho; Ming-Feng Ho; Paul T. P. Ho; Yau-De Huang; Homin Jiang; Derek Kubo; Chao-Te Li; Yu-Chiung Lin; Guo-Chin Liu; Pierre Martin-Cocher; Sandor M. Molnar; Emmanuel Nunez; Peter Oshiro; Shang-Ping Pai

The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) is a co-planar interferometer array operating at a wavelength of 3 mm to measure the Sunyaev-Zel’dovich effect (SZE) of galaxy clusters at arcminute scales. The first phase of operation ‐ with a compact 7-element array with 0.6 m antennas (AMiBA7) ‐ observed six clusters at angular scales from 5 0 to 23 0 . Here, we describe the expansion of AMiBA to a 13-element array with 1.2 m antennas (AMiBA-13), its subsequent commissioning, and cluster SZE observing program. The most noticeable changes compared to AMiBA-7 are (1) array re-configuration with baselines ranging from 1.4 m to 4.8 m, allowing us to sample structures between 2 0 and 10 0 , (2) thirteen new lightweight carbon-fiber-reinforced plastic (CFRP) 1.2 m reflectors, and (3) additional correlators and six new receivers. Since the reflectors are co-mounted on and distributed over the entire six-meter CFRP platform, a refined hexapod pointing error model and phase error correction scheme have been developed for AMiBA-13. These effects ‐ entirely negligible for the earlier central close-packed AMiBA-7 configuration ‐ can lead to additional geometrical delays during observations. Our correction scheme recovers at least 80 5% of point source fluxes. We, therefore, apply an upward correcting factor of 1.25 to our visibilities to correct for phase decoherence, and a 5% systematic uncertainty is added in quadrature with our statistical errors. We demonstrate the absence of further systematics with a noise level consistent with zero in stackeduv-visibilities. From the AMiBA-13 SZE observing program, we present here maps of a subset of twelve clusters with signal-to-noise ratios above five. We demonstrate combining AMiBA-7 with AMiBA-13 observations on Abell 1689, by jointly fitting their data to a generalized Navarro‐Frenk‐White (gNFW) model. Our cylindrically-integrated Compton-y values for five radii are consistent with results from the Berkeley-Illinois-Maryland Array (BIMA), Owens Valley Radio Observatory (OVRO), Sunyaev-Zel’dovich Array (SZA), and the Planck Observatory. We also report the first targeted SZE detection towards the optically selected cluster RCS J1447+0828, and we demonstrate the ability of AMiBA SZE data to serve as a proxy for the total cluster mass. Finally, we show that our AMiBA-SZE derived cluster masses are consistent with recent lensing mass measurements in the literature. Subject headings: cosmology: cosmic background radiation — galaxies: clusters: general — instrumentation: interferometers

Collaboration


Dive into the Kai-Yang Lin's collaboration.

Top Co-Authors

Avatar

Patrick M. Koch

Academia Sinica Institute of Astronomy and Astrophysics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul T. P. Ho

Academia Sinica Institute of Astronomy and Astrophysics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chao-Te Li

Academia Sinica Institute of Astronomy and Astrophysics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Homin Jiang

Academia Sinica Institute of Astronomy and Astrophysics

View shared research outputs
Researchain Logo
Decentralizing Knowledge