Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kaibin Huang is active.

Publication


Featured researches published by Kaibin Huang.


IEEE Transactions on Wireless Communications | 2013

Opportunistic Wireless Energy Harvesting in Cognitive Radio Networks

Seung-Hyun Lee; Rui Zhang; Kaibin Huang

Wireless networks can be self-sustaining by harvesting energy from ambient radio-frequency (RF) signals. Recently, researchers have made progress on designing efficient circuits and devices for RF energy harvesting suitable for low-power wireless applications. Motivated by this and building upon the classic cognitive radio (CR) network model, this paper proposes a novel method for wireless networks coexisting where low-power mobiles in a secondary network, called secondary transmitters (STs), harvest ambient RF energy from transmissions by nearby active transmitters in a primary network, called primary transmitters (PTs), while opportunistically accessing the spectrum licensed to the primary network. We consider a stochastic-geometry model in which PTs and STs are distributed as independent homogeneous Poisson point processes (HPPPs) and communicate with their intended receivers at fixed distances. Each PT is associated with a guard zone to protect its intended receiver from STs interference, and at the same time delivers RF energy to STs located in its harvesting zone. Based on the proposed model, we analyze the transmission probability of STs and the resulting spatial throughput of the secondary network. The optimal transmission power and density of STs are derived for maximizing the secondary network throughput under the given outage-probability constraints in the two coexisting networks, which reveal key insights to the optimal network design. Finally, we show that our analytical result can be generally applied to a non-CR setup, where distributed wireless power chargers are deployed to power coexisting wireless transmitters in a sensor network.


IEEE Transactions on Wireless Communications | 2014

Enabling Wireless Power Transfer in Cellular Networks: Architecture, Modeling and Deployment

Kaibin Huang; Vincent Kin Nang Lau

Microwave power transfer (MPT) delivers energy wirelessly from stations called power beacons (PBs) to mobile devices by microwave radiation. This provides mobiles practically infinite battery lives and eliminates the need of power cords and chargers. To enable MPT for mobile recharging, this paper proposes a new network architecture that overlays an uplink cellular network with randomly deployed PBs for powering mobiles, called a hybrid network. The deployment of the hybrid network under an outage constraint on data links is investigated based on a stochastic-geometry model where single-antenna base stations (BSs) and PBs form independent homogeneous Poisson point processes (PPPs) with densities λ<sub>b</sub> and λ<sub>p</sub>, respectively, and single-antenna mobiles are uniformly distributed in Voronoi cells generated by BSs. In this model, mobiles and PBs fix their transmission power at p and q, respectively; a PB either radiates isotropically, called isotropic MPT, or directs energy towards target mobiles by beamforming, called directed MPT. The model is used to derive the tradeoffs between the network parameters (p, λ<sub>b</sub>, q, λ<sub>p</sub>) under the outage constraint. First, consider the deployment of the cellular network. It is proved that the outage constraint is satisfied so long as the product pλ<sub>b</sub><sup>α/2</sup> is above a given threshold where α is the path-loss exponent. Next, consider the deployment of the hybrid network assuming infinite energy storage at mobiles. It is shown that for isotropic MPT, the product qλ<sub>p</sub>λ<sub>b</sub><sup>α/2</sup> has to be above a given threshold so that PBs are sufficiently dense; for directed MPT, z<sub>m</sub>qλ<sub>p</sub>λ<sub>b</sub><sup>α/2</sup> with z<sub>m</sub> denoting the array gain should exceed a different threshold to ensure short distances between PBs and their target mobiles. Furthermore, similar results are derived for the case of mobiles having small energy storage.


IEEE Journal on Selected Areas in Communications | 2015

Energy Harvesting Wireless Communications: A Review of Recent Advances

Sennur Ulukus; Aylin Yener; Elza Erkip; Osvaldo Simeone; Michele Zorzi; Pulkit Grover; Kaibin Huang

This paper summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access, and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed, as well as models for energy consumption at the nodes.


international conference on acoustics, speech, and signal processing | 2013

Simultaneous Information and Power Transfer for Broadband Wireless Systems

Kaibin Huang; Erik G. Larsson

Far-field microwave power transfer (MPT) will free wireless sensors and other mobile devices from the constraints imposed by finite battery capacities. Integrating MPT with wireless communications to support simultaneous wireless information and power transfer (SWIPT) allows the same spectrum to be used for dual purposes without compromising the quality of service. A novel approach is presented in this paper for realizing SWIPT in a broadband system where orthogonal frequency division multiplexing and transmit beamforming are deployed to create a set of parallel sub-channels for SWIPT, which simplifies resource allocation. Based on a proposed reconfigurable mobile architecture, different system configurations are considered by combining single-user/multi-user systems, downlink/uplink information transfer, and variable/fixed coding rates. Optimizing the power control for these configurations results in a new class of multi-user power-control problems featuring the circuit-power constraints, specifying that the transferred power must be sufficiently large to support the operation of the receiver circuitry. Solving these problems gives a set of power-control algorithms that exploit channel diversity in frequency for simultaneously enhancing the throughput and the MPT efficiency. For the system configurations with variable coding rates, the algorithms are variants of water-filling that account for the circuit-power constraints. The optimal algorithms for those configurations with fixed coding rates are shown to sequentially allocate mobiles their required power for decoding in ascending order until the entire budgeted power is spent. The required power for a mobile is derived as simple functions of the minimum signal-to-noise ratio for correct decoding, the circuit power and sub-channel gains.


IEEE Journal on Selected Areas in Communications | 2009

Spectrum sharing between cellular and mobile ad hoc networks: transmission-capacity trade-off

Kaibin Huang; Vincent Kin Nang Lau; Yan Chen

Spectrum sharing between wireless networks improves the efficiency of spectrum usage, and thereby alleviates spectrum scarcity due to growing demands for wireless broadband access. To improve the usual underutilization of the cellular uplink spectrum, this paper addresses spectrum sharing between a cellular uplink and a mobile ad hoc networks. These networks access either all frequency subchannels or their disjoint subsets, called spectrum underlay and spectrum overlay, respectively. Given these spectrum sharing methods, the capacity trade-off between the coexisting networks is analyzed based on the transmission capacity of a network with Poisson distributed transmitters. This metric is defined as the maximum density of transmitters subject to an outage constraint for a given signal-to-interference ratio (SIR). Using tools from stochastic geometry, the transmission-capacity trade-off between the coexisting networks is analyzed, where both spectrum overlay and underlay as well as successive interference cancellation (SIC) are considered. In particular, for small target outage probability, the transmission capacities of the coexisting networks are proved to satisfy a linear equation, whose coefficients depend on the spectrum sharing method and whether SIC is applied. This linear equation shows that spectrum overlay is more efficient than spectrum underlay. Furthermore, this result also provides insight into the effects of network parameters on transmission capacities, including link diversity gains, transmission distances, and the base station density. In particular, SIC is shown to increase the transmission capacities of both coexisting networks by a linear factor, which depends on the interference-power threshold for qualifying canceled interferers.


vehicular technology conference | 2009

Performance of Orthogonal Beamforming for SDMA With Limited Feedback

Kaibin Huang; Jeffrey G. Andrews; Robert W. Heath

On the multiantenna broadcast channel, the spatial degrees of freedom support simultaneous transmission to multiple users. The optimal multiuser transmission, which is known as dirty paper coding, is not directly realizable. Moreover, close-to-optimal solutions such as Tomlinson-Harashima precoding are sensitive to channel state information (CSI) inaccuracy. This paper considers a more practical design called per user unitary and rate control (PU2RC), which has been proposed for emerging cellular standards. PU2RC supports multiuser simultaneous transmission, enables limited feedback, and is capable of exploiting multiuser diversity. Its key feature is an orthogonal beamforming (or precoding) constraint, where each user selects a beamformer (or precoder) from a codebook of multiple orthonormal bases. In this paper, the asymptotic throughput scaling laws for PU2RC with a large user pool are derived for different regimes of the signal-to-noise ratio (SNR). In the multiuser interference-limited regime, the throughput of PU2RC is shown to logarithmically scale with the number of users. In the normal SNR and noise-limited regimes, the throughput is found to scale double logarithmically with the number of users and linearly with the number of antennas at the base station. In addition, numerical results show that PU2RC achieves higher throughput and is more robust against CSI quantization errors than the popular alternative of zero-forcing beamforming if the number of users is sufficiently large.


IEEE Transactions on Signal Processing | 2007

Space Division Multiple Access With a Sum Feedback Rate Constraint

Kaibin Huang; Robert W. Heath; Jeffrey G. Andrews

On a multiantenna broadcast channel, simultaneous transmission to multiple users by joint beamforming and scheduling is capable of achieving high throughput, which grows double logarithmically with the number of users. The sum rate for channel state information (CSI) feedback, however, increases linearly with the number of users, reducing the effective uplink capacity. To address this problem, a novel space division multiple access (SDMA) design is proposed, where the sum feedback rate is upper bounded by a constant. This design consists of algorithms for CSI quantization, threshold-based CSI feedback, and joint beamforming and scheduling. The key feature of the proposed approach is the use of feedback thresholds to select feedback users with large channel gains and small CSI quantization errors such that the sum feedback rate constraint is satisfied. Despite this constraint, the proposed SDMA design is shown to achieve a sum capacity growth rate close to the optimal one. Moreover, the feedback overflow probability for this design is found to decrease exponentially with the difference between the allowable and the average sum feedback rates. Numerical results show that the proposed SDMA design is capable of attaining higher sum capacities than existing ones, even though the sum feedback rate is bounded.


IEEE Transactions on Signal Processing | 2009

Limited Feedback Beamforming Over Temporally-Correlated Channels

Kaibin Huang; Robert W. Heath; Jeffrey G. Andrews

Feedback of quantized channel state information (CSI), called limited feedback, enables transmit beamforming in multiple-input-multiple-output (MIMO) wireless systems with a small amount of overhead. Due to its efficiency, beamforming with limited feedback has been adopted in several wireless communication standards. Prior work on limited feedback commonly adopts the block fading channel model where temporal correlation in wireless channels is neglected. In this paper, we consider temporally correlated channels and design single-user transmit beamforming with limited feedback. Analytical results concerning CSI feedback are derived by modeling quantized CSI as a first-order finite-state Markov chain. These results include the information rate of the CSI quantizer output, the bit rate a CSI feedback channel is required to support, and the effect of feedback delay on throughput. In particular, based on the theory of Markov chain convergence rate, feedback delay is proved to reduce the throughput gain due to CSI feedback at least exponentially. Furthermore, an algorithm is proposed for CSI feedback compression in time. Combining the results in this work leads to a new method for designing limited feedback beamforming as demonstrated by a design example.


IEEE Communications Letters | 2012

Coverage and Economy of Cellular Networks with Many Base Stations

Seung-Hyun Lee; Kaibin Huang

The performance of a cellular network can be significantly improved by employing many base stations (BSs), which shortens transmission distances. However, there exist no known results on quantifying the performance gains from deploying many BSs. To address this issue, we adopt a stochastic-geometry model of the downlink cellular network and analyze the mobile outage probability. Specifically, given Poisson distributed BSs, the outage probability is shown to diminish inversely with the increasing ratio between the BS and mobile densities. Furthermore, we analyze the optimal tradeoff between the performance gain from increasing the BS density and the resultant network cost accounting for energy consumption, BS hardware and backhaul cables. The optimal BS density is proved to be proportional to the square root of the mobile density and the inverse of the square root of the cost factors considered.


IEEE Transactions on Information Theory | 2012

Spatial Interference Cancellation for Multiantenna Mobile Ad Hoc Networks

Kaibin Huang; Jeffrey G. Andrews; Dongning Guo; Robert W. Heath; Randall A. Berry

Interference between nodes is a critical impairment in mobile ad hoc networks. This paper studies the role of multiple antennas in mitigating such interference. Specifically, a network is studied in which receivers apply zero-forcing beamforming to cancel the strongest interferers. Assuming a network with Poisson-distributed transmitters and independent Rayleigh fading channels, the transmission capacity is derived, which gives the maximum number of successful transmissions per unit area. Mathematical tools from stochastic geometry are applied to obtain the asymptotic transmission capacity scaling and characterize the impact of inaccurate channel state information (CSI). It is shown that, if each node cancels interferers, the transmission capacity decreases as as the outage probability vanishes. For fixed , as grows, the transmission capacity increases as where is the path-loss exponent. Moreover, CSI inaccuracy is shown to have no effect on the transmission capacity scaling as vanishes, provided that the CSI training sequence has an appropriate length, which we derive. Numerical results suggest that canceling merely one interferer by each node may increase the transmission capacity by an order of magnitude or more, even when the CSI is imperfect.

Collaboration


Dive into the Kaibin Huang's collaboration.

Top Co-Authors

Avatar

Vincent Kin Nang Lau

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jeffrey G. Andrews

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Robert W. Heath

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guangxu Zhu

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kaifeng Han

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Rui Zhang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seung-Woo Ko

University of Hong Kong

View shared research outputs
Researchain Logo
Decentralizing Knowledge