Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kaichiro Sasa is active.

Publication


Featured researches published by Kaichiro Sasa.


Journal of Forest Research | 2005

Effect of collar insertion on soil respiration in a larch forest measured with a LI-6400 soil CO2 flux system

Wen Jie Wang; Yuan Gang Zu; Hui Mei Wang; Takashi Hirano; Kentaro Takagi; Kaichiro Sasa; Takayoshi Koike

Little information is available on the effect of root cutting by the collar pre-insertion technique on soil respiration. In this study, we found that soil respiration rates decreased with increasing depth of collar insertion in both the “with live roots intact” and “with live roots severed” treatments, but the rate of decrease was substantially higher in the former. The cutting of roots, especially fine roots, may be responsible for this result.


The Scientific World Journal | 2001

Regional Comparison of Nitrogen Export to Japanese Forest Streams

H. Shibata; Koichiro Kuraji; Hiroto Toda; Kaichiro Sasa

Nitrogen (N) emissions in Asian countries are predicted to increase over the next several decades. An understanding of the mechanisms that control temporal and spatial fluctuation of N export to forest streams is important not only to quantify critical loads of N, N saturation status, and soil acidification N dynamics and budgets in Japanese forested watersheds is not clear due to the lack of regional comparative studies on stream N chemistry. To address the lack of comparative studies, we measured inorganic N (nitrate and ammonium) concentrations from June 2000 to May 2001 in streams in 18 experimental forests located throughout the Japanese archipelago and belonging to the Japanese Union of University Forests. N concentrations in stream water during base flow and high flow periods were monitored, and N mineralization potential in soil was measured using batch incubation experiments. Higher nitrate concentrations in stream water were present in central Japan, an area that receives high rates of atmospheric N deposition. In northern Japan, snowmelt resulted in increased nitrate concentrations in stream water. The potential net N mineralization rate was higher in surface soil than in subsurface soil, and the high potential for N mineralization in the surface soil partly contributed to the increase in nitrate concentration in stream water during a storm event. Regional differences in the atmospheric N deposition and seasonality of precipitation and high discharge are principal controls on the concentrations and variations of nitrates in stream water in forested watersheds of Japan.


Ecology | 2015

BAAD: a biomass and allometry database for woody plants

Daniel S. Falster; Remko A. Duursma; Masae Iwamoto Ishihara; Diego R. Barneche; Richard G. FitzJohn; Angelica Vårhammar; Masahiro Aiba; Makoto Ando; Niels P. R. Anten; Michael J. Aspinwall; Jennifer L. Baltzer; Christopher Baraloto; Michael Battaglia; John J. Battles; Ben Bond-Lamberty; Michiel van Breugel; James S. Camac; Yves Claveau; Lluís Coll; Masako Dannoura; Sylvain Delagrange; Jean-Christophe Domec; Farrah R. Fatemi; Wang Feng; Veronica Gargaglione; Yoshiaki Goto; Akio Hagihara; Jefferson S. Hall; S. K. Hamilton; Degi Harja

Understanding how plants are constructed—i.e., how key size dimensions and the amount of mass invested in different tissues varies among individuals—is essential for modeling plant growth, carbon stocks, and energy fluxes in the terrestrial biosphere. Allocation patterns can differ through ontogeny, but also among coexisting species and among species adapted to different environments. While a variety of models dealing with biomass allocation exist, we lack a synthetic understanding of the underlying processes. This is partly due to the lack of suitable data sets for validating and parameterizing models. To that end, we present the Biomass And Allometry Database (BAAD) for woody plants. The BAAD contains 259 634 measurements collected in 176 different studies, from 21 084 individuals across 678 species. Most of these data come from existing publications. However, raw data were rarely made public at the time of publication. Thus, the BAAD contains data from different studies, transformed into standard units and variable names. The transformations were achieved using a common workflow for all raw data files. Other features that distinguish the BAAD are: (i) measurements were for individual plants rather than stand averages; (ii) individuals spanning a range of sizes were measured; (iii) plants from 0.01–100 m in height were included; and (iv) biomass was estimated directly, i.e., not indirectly via allometric equations (except in very large trees where biomass was estimated from detailed sub-sampling). We included both wild and artificially grown plants. The data set contains the following size metrics: total leaf area; area of stem cross-section including sapwood, heartwood, and bark; height of plant and crown base, crown area, and surface area; and the dry mass of leaf, stem, branches, sapwood, heartwood, bark, coarse roots, and fine root tissues. We also report other properties of individuals (age, leaf size, leaf mass per area, wood density, nitrogen content of leaves and wood), as well as information about the growing environment (location, light, experimental treatment, vegetation type) where available. It is our hope that making these data available will improve our ability to understand plant growth, ecosystem dynamics, and carbon cycling in the worlds vegetation.


Plant Cell and Environment | 2010

Differential anatomical responses to elevated CO2 in saplings of four hardwood species.

Yoko Watanabe; Takami Satomura; Kaichiro Sasa; Ryo Funada; Takayoshi Koike

To determine whether an elevated carbon dioxide concentration ([CO(2)]) can induce changes in the wood structure and stem radial growth in forest trees, we investigated the anatomical features of conduit cells and cambial activity in 4-year-old saplings of four deciduous broadleaved tree species - two ring-porous (Quercus mongolica and Kalopanax septemlobus) and two diffuse-porous species (Betula maximowicziana and Acer mono) - grown for three growing seasons in a free-air CO(2) enrichment system. Elevated [CO(2)] had no effects on vessels, growth and physiological traits of Q. mongolica, whereas tree height, photosynthesis and vessel area tended to increase in K. septemlobus. No effects of [CO(2)] on growth, physiological traits and vessels were seen in the two diffuse-porous woods. Elevated [CO(2)] increased larger vessels in all species, except B. maximowicziana and number of cambial cells in two ring-porous species. Our results showed that the vessel anatomy and radial stem growth of Q. mongolica, B. maximowicziana and A. mono were not affected by elevated [CO(2)], although vessel size frequency and cambial activity in Q. mongolica were altered. In contrast, changes in vessel anatomy and cambial activity were induced by elevated [CO(2)] in K. septemlobus. The different responses to elevated [CO(2)] suggest that the sensitivity of forest trees to CO(2) is species dependent.


Ecological Research | 1996

Landform effects on fire behavior and post-fire regeneration in the mixed forests of northern Japan

Sadao Takaoka; Kaichiro Sasa

This study was conducted to clarify the characteristics of landform effects on fire behavior and post-fire regeneration and to examine regional differences in the effects of fire within a mixed-forest area with various topographic conditions in Hokkaido, northern Japan. Fire spread was controlled by topographic barriers such as ridges and valleys, although this was not clear in the areas with serpentinite. Fire frequency was higher on windward slopes of the prevailing wind, and the size of the burned area varied with the underlying geology, which controlled the areal extent of hillside slopes. In areas with terrace deposits, Wakkanai Formation or serpentinized rock, burned areas were large and included few unburned stands. The type of vegetation that grew following the fires varied with slope aspect and topographic position.Sasa grasslands often formed at wind-exposed sites. The grasslands were well developed in the three areas with the previously mentioned geology, where large-scale burning had occurred. Structure of the re-established forest stands was also affected by landforms. Canopy height and the maximum diameter at breast height varied with slope aspect, topographic position and elevation, as well as with stand age. Tree size was found to decrease at wind-exposed sites within high-elevation zones.


Water Air and Soil Pollution | 2001

Importance of Internal Proton Production for the Proton Budget in Japanese Forested Ecosystems

H. Shibata; Fuyuki Satoh; Kaichiro Sasa; M. Ozawa; N. Usui; Osamu Nagata; Y. Hayakawa; Ryusuke Hatano

Annual biogeochemical fluxes (bulk precipitation, throughfall, stem flow, soil solution and vegetation uptake) of inorganic elements were observed in eight cool temperature forested ecosystems in Hokkaido, northern Japan, in order to determine the mechanisms of acid neutralization in Japanese forest ecosystems. We compared our results with the other biogeochemical studies in Japan, north Europe and US from the literature. In many Japanese forests, the internal proton production (IPS) by base cation accumulation into the vegetation was a major proton source, rather than external acidic deposition, and the IPS also affected the base cation fluxes from the mineral. IPS in Japanese forest tended to be larger than that in north Europe and US. Our results suggested that the high acid neutralizing ability of Japanese forests could be attributed to the strong relationship between the base cation buffering of the soil and the larger contribution of IPS as a proton source. acidic deposition|biogeochemical cycling|forest ecosystem|Japan|proton budget


The Scientific World Journal | 2001

Effects of Surface Soil Removal on Dynamics of Dissolved Inorganic Nitrogen in a Snow-Dominated Forest

M. Ozawa; H. Shibata; F. Satoh; Kaichiro Sasa

To clarify the effect of vegetation and surface soil removal on dissolved inorganic nitrogen (N) dynamics in a snow-dominated forest soil in northern Japan, the seasonal fluctuation of N concentrations in soil solution and the annual flux of N in soil were investigated at a treated site (in which surface soil, including understory vegetation and organic and A horizons, was removed) and control sites from July 1998 to June 2000. Nitrate (NO3) concentration in soil solution at the treated site was significantly higher than that of the control in the no-snow period, and it was decreased by dilution from melting snow. The annual net outputs of NO3 from soil at the treated site and control sites were 257 and –12 mmol m year, and about 57% of the net output at the treated site occurred during the snowmelt period. NO3 was transported from the upper level to the lower level of soil via water movement during late autumn and winter, and it was retained in soil and leached by melt water in early spring. Removing vegetation and surface soil resulted in an increase in NO3 concentration of soil solution, and snowmelt strongly affected the NO3 leaching from treated soil and the NO3 restoration process in a snow-dominated region.


Tellus B | 2013

Sustained large stimulation of soil heterotrophic respiration rate and its temperature sensitivity by soil warming in a cool-temperate forested peatland

Maricar Aguilos; Kentaro Takagi; Naishen Liang; Yoko Watanabe; Munemasa Teramoto; Seijiro Goto; Yoshiyuki Takahashi; Hitoshi Mukai; Kaichiro Sasa

We conducted a soil warming experiment in a cool-temperate forested peatland in northern Japan during the snow-free seasons of 2007–2011, to determine whether the soil warming would change the heterotrophic respiration rate and its temperature sensitivity. We elevated the soil temperature by 3°C at 5-cm depth by using overhead infrared heaters and continuously measured hourly soil CO2 fluxes with a 15-channel automated chamber system. The 15 chambers were divided into three groups each with five replications for the control, unwarmed-trenched and warmed-trenched treatments. Soil warming enhanced heterotrophic respiration by 82% (mean of four seasons (2008–2011) observation±SD, 6.84±2.22 µmol C m−2 s−1) as compared to the unwarmed-trenched treatment (3.76±0.98 µmol C m−2 s−1). The sustained enhancement of heterotrophic respiration with soil warming suggests that global warming will accelerate the loss of carbon substantially more from forested peatlands than from other upland forest soils. Soil warming likewise enhanced temperature sensitivity slightly (Q 10, 3.1±0.08 and 3.3±0.06 in the four-season average in unwarmed- and warmed-trenched treatments, respectively), and significant effect was observed in 2009 (p<0.001) and 2010 (p<0.01). However, there was no significant difference in the basal respiration rate at 10°C (R 10, 2.2±0.52 and 2.8±1.2 µmol C m−2 s−1) between treatments, although the values tended to be high by warming throughout the study period. These results suggest that global warming will enhance not only the heterotrophic respiration rate itself but also its Q 10 in forests with high substrate availability and without severe water stress, and predictions for such ecosystems obtained by using models assuming no change in Q 10 are likely to underestimate the carbon release from the soil to the atmosphere in a future warmer environment.


Water Air and Soil Pollution | 2001

Chemical Characteristics in Stemflow of Japanese Cedar in Japan

Asami Nakanishi; H. Shibata; Yoji Inokura; Toshio Nakao; Hiroto Toda; Fuyuki Satoh; Kaichiro Sasa

To clarify the characteristics in stemflow of Japanese cedar (Cryptomeria japonica), we conducted the annual and extensive observation. We examined the chemistry of bulk and wet deposition, throughfall and stemflow at 26 forested sites in June and September 1998. The each sampling site was broadly distributed in all over the Japanese archipelago. The stemflow pH of Japanese cedar was significantly lower (p<0.01) than precipitation and stemflow of broad-leaved species in both months. There were significant anion deficits in stemflow of Japanese cedar, suggesting that organic anions derived from plant sources play an important role in the stemflow acidity. Our results suggested that the strong stemflow acidity in Japanese cedar was derived from an internal biological characteristic rather than influences of external acidic deposition.


Landscape and Ecological Engineering | 2009

Growth of regenerated tree seedlings associated with microclimatic change in a mature larch plantation after harvesting

Satoshi Kitaoka; Makoto Watanabe; Yoko Watanabe; Masazumi Kayama; Mutsumi Nomura; Kaichiro Sasa

In order to further develop methods of sustainable forest management, we evaluated the effects of logging practices during the winter on microclimatic factors and growth of four seral deciduous broad-leaved tree seedlings regenerated in a larch plantation in northern Japan. We found that winter logging practices drastically changed microclimatic factors, especially in terms of light intensity and the vertical distribution pattern of CO2 concentration. Harvesting overstory larch trees increased photosynthetic photon flux (PPF), which may enhance the photosynthesis of understory plants. We examined the undergrowth for tree seedlings of the following species: two late successional species, Prunus ssiori and Carpinus cordata; one gap phase species, Magnolia hyporeuca; and one mid-late successional species, Quercus mongolica var. crispula. All of the four studied tree species responded well to the practices of winter logging after the second year of harvesting overstoried larch trees. The current shoot diameter and current shoot length increased significantly. Therefore, we conclude that winter logging practices should improve shoot growth of deciduous broad-leaved tree seedlings regenerated in a larch plantation through the change in environmental factors that accompanies larch harvest.

Collaboration


Dive into the Kaichiro Sasa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasumi Fujinuma

National Institute for Environmental Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge