Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kaiqi Sun is active.

Publication


Featured researches published by Kaiqi Sun.


Journal of Clinical Investigation | 2014

Elevated sphingosine-1-phosphate promotes sickling and sickle cell disease progression

Yujin Zhang; Vladimir Berka; Anren Song; Kaiqi Sun; Wei Wang; Weiru Zhang; Chen Ning; Chonghua Li; Qibo Zhang; Mikhail Bogdanov; Danny Alexander; Michael V. Milburn; Mostafa H. Ahmed; Han Lin; Modupe Idowu; Jun Zhang; Gregory J. Kato; Osheiza Abdulmalik; Wenzheng Zhang; William Dowhan; Rodney E. Kellems; Pumin Zhang; Jianping Jin; Martin K. Safo; Ah Lim Tsai; Harinder S. Juneja; Yang Xia

Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates multicellular functions through interactions with its receptors on cell surfaces. S1P is enriched and stored in erythrocytes; however, it is not clear whether alterations in S1P are involved in the prevalent and debilitating hemolytic disorder sickle cell disease (SCD). Here, using metabolomic screening, we found that S1P is highly elevated in the blood of mice and humans with SCD. In murine models of SCD, we demonstrated that elevated erythrocyte sphingosine kinase 1 (SPHK1) underlies sickling and disease progression by increasing S1P levels in the blood. Additionally, we observed elevated SPHK1 activity in erythrocytes and increased S1P in blood collected from patients with SCD and demonstrated a direct impact of elevated SPHK1-mediated production of S1P on sickling that was independent of S1P receptor activation in isolated erythrocytes. Together, our findings provide insights into erythrocyte pathophysiology, revealing that a SPHK1-mediated elevation of S1P contributes to sickling and promotes disease progression, and highlight potential therapeutic opportunities for SCD.


Circulation Research | 2013

Elevated Ecto-5'-nucleotidase-Mediated Increased Renal Adenosine Signaling Via A2B Adenosine Receptor Contributes to Chronic Hypertension

Weiru Zhang; Yujin Zhang; Wei Wang; Yingbo Dai; Chen Ning; Renna Luo; Kaiqi Sun; Louise Glover; Almut Grenz; Hong Sun; Lijian Tao; Wenzheng Zhang; Sean P. Colgan; Michael R. Blackburn; Holger K. Eltzschig; Rodney E. Kellems; Yang Xia

Rationale: Hypertension is the most prevalent life-threatening disease worldwide and is frequently associated with chronic kidney disease (CKD). However, the molecular basis underlying hypertensive CKD is not fully understood. Objective: We sought to identify specific factors and signaling pathways that contribute to hypertensive CKD and thereby exacerbate disease progression. Methods and Results: Using high-throughput quantitative reverse-transcription polymerase chain reaction profiling, we discovered that the expression level of 5′-ectonucleotidase (CD73), a key enzyme that produces extracellular adenosine, was significantly increased in the kidneys of angiotensin II–infused mice, an animal model of hypertensive nephropathy. Genetic and pharmacological studies in mice revealed that elevated CD73-mediated excess renal adenosine preferentially induced A2B adenosine receptor (ADORA2B) production and that enhanced kidney ADORA2B signaling contributes to angiotensin II–induced hypertension. Similarly, in humans, we found that CD73 and ADORA2B levels were significantly elevated in the kidneys of CKD patients compared with normal individuals and were further elevated in hypertensive CKD patients. These findings led us to further discover that elevated renal CD73 contributes to excess adenosine signaling via ADORA2B activation that directly stimulates endothelin-1 production in a hypoxia-inducible factor-&agr;–dependent manner and underlies the pathogenesis of the disease. Finally, we revealed that hypoxia-inducible factor-&agr; is an important factor responsible for angiotensin II–induced CD73 and ADORA2B expression at the transcriptional level. Conclusions: Overall, our studies reveal that angiotensin II–induced renal CD73 promotes the production of renal adenosine that is a prominent driver of hypertensive CKD by enhanced ADORA2B signaling–mediated endothelin-1 induction in a hypoxia-inducible factor-&agr;–dependent manner. The inhibition of excess adenosine-mediated ADORA2B signaling represents a novel therapeutic target for the disease.


Circulation | 2016

Beneficial role of erythrocyte adenosine A2B receptor-mediated AMP-activated protein kinase activation in high-altitude hypoxia

Hong Liu; Yujin Zhang; Hongyu Wu; Angelo D’Alessandro; Gennady G. Yegutkin; Anren Song; Kaiqi Sun; Jessica Li; Ning-Yuan Cheng; Aji Huang; Yuan Edward Wen; Ting Ting Weng; Fayong Luo; Travis Nemkov; Hong Sun; Rodney E. Kellems; Harry Karmouty-Quintana; Kirk C. Hansen; Bihong Zhao; Andrew W. Subudhi; Sonja Jameson-Van Houten; Colleen G. Julian; Andrew T. Lovering; Holger K. Eltzschig; Michael R. Blackburn; Robert C. Roach; Yang Xia

Background: High altitude is a challenging condition caused by insufficient oxygen supply. Inability to adjust to hypoxia may lead to pulmonary edema, stroke, cardiovascular dysfunction, and even death. Thus, understanding the molecular basis of adaptation to high altitude may reveal novel therapeutics to counteract the detrimental consequences of hypoxia. Methods: Using high-throughput, unbiased metabolomic profiling, we report that the metabolic pathway responsible for production of erythrocyte 2,3-bisphosphoglycerate (2,3-BPG), a negative allosteric regulator of hemoglobin-O2 binding affinity, was significantly induced in 21 healthy humans within 2 hours of arrival at 5260 m and further increased after 16 days at 5260 m. Results: This finding led us to discover that plasma adenosine concentrations and soluble CD73 activity rapidly increased at high altitude and were associated with elevated erythrocyte 2,3-BPG levels and O2 releasing capacity. Mouse genetic studies demonstrated that elevated CD73 contributed to hypoxia-induced adenosine accumulation and that elevated adenosine-mediated erythrocyte A2B adenosine receptor activation was beneficial by inducing 2,3-BPG production and triggering O2 release to prevent multiple tissue hypoxia, inflammation, and pulmonary vascular leakage. Mechanistically, we demonstrated that erythrocyte AMP-activated protein kinase was activated in humans at high altitude and that AMP-activated protein kinase is a key protein functioning downstream of the A2B adenosine receptor, phosphorylating and activating BPG mutase and thus inducing 2,3-BPG production and O2 release from erythrocytes. Significantly, preclinical studies demonstrated that activation of AMP-activated protein kinase enhanced BPG mutase activation, 2,3-BPG production, and O2 release capacity in CD73-deficient mice, in erythrocyte-specific A2B adenosine receptor knockouts, and in wild-type mice and in turn reduced tissue hypoxia and inflammation. Conclusions: Together, human and mouse studies reveal novel mechanisms of hypoxia adaptation and potential therapeutic approaches for counteracting hypoxia-induced tissue damage.


Circulation | 2015

Elevated Placental Adenosine Signaling Contributes to the Pathogenesis of Preeclampsia

Takayuki Iriyama; Kaiqi Sun; Nicholas F. Parchim; Jessica Li; Cheng Zhao; Anren Song; Laura A. Hart; Sean C. Blackwell; Baha M. Sibai; Lee Nien L Chan; Teh Sheng Chan; M. John Hicks; Michael R. Blackburn; Rodney E. Kellems; Yang Xia

Background— Preeclampsia is a prevalent hypertensive disorder of pregnancy and a leading cause of maternal and neonatal morbidity and mortality worldwide. This pathogenic condition is speculated to be caused by placental abnormalities that contribute to the maternal syndrome. However, the specific factors and signaling pathways that lead to impaired placentas and maternal disease development remain elusive. Methods and Results— Using 2 independent animal models of preeclampsia (genetically engineered pregnant mice with elevated adenosine exclusively in placentas and a pathogenic autoantibody-induced preeclampsia mouse model), we demonstrated that chronically elevated placental adenosine was sufficient to induce hallmark features of preeclampsia, including hypertension, proteinuria, small fetuses, and impaired placental vasculature. Genetic and pharmacological approaches revealed that elevated placental adenosine coupled with excessive A2B adenosine receptor (ADORA2B) signaling contributed to the development of these features of preeclampsia. Mechanistically, we provided both human and mouse evidence that elevated placental CD73 is a key enzyme causing increased placental adenosine, thereby contributing to preeclampsia. Conclusions— We determined that elevated placental adenosine signaling is a previously unrecognized pathogenic factor for preeclampsia. Moreover, our findings revealed the molecular basis underlying the elevation of placental adenosine and the detrimental role of excess placental adenosine in the pathophysiology of preeclampsia, and thereby, we highlight novel therapeutic targets.


Nature Communications | 2016

Sphingosine-1-phosphate promotes erythrocyte glycolysis and oxygen release for adaptation to high-altitude hypoxia

Kaiqi Sun; Yujin Zhang; Angelo D'Alessandro; Travis Nemkov; Anren Song; Hongyu Wu; Hong Liu; Morayo G. Adebiyi; Aji Huang; Yuan E. Wen; Mikhail Bogdanov; Alejandro Vila; John O'Brien; Rodney E. Kellems; William Dowhan; Andrew W. Subudhi; Sonja Jameson-Van Houten; Colleen G. Julian; Andrew T. Lovering; Martin K. Safo; Kirk C. Hansen; Robert C. Roach; Yang Xia

Sphingosine-1-phosphate (S1P) is a bioactive signalling lipid highly enriched in mature erythrocytes, with unknown functions pertaining to erythrocyte physiology. Here by employing nonbiased high-throughput metabolomic profiling, we show that erythrocyte S1P levels rapidly increase in 21 healthy lowland volunteers at 5,260 m altitude on day 1 and continue increasing to 16 days with concurrently elevated erythrocyte sphingonisne kinase 1 (Sphk1) activity and haemoglobin (Hb) oxygen (O2) release capacity. Mouse genetic studies show that elevated erythrocyte Sphk1-induced S1P protects against tissue hypoxia by inducing O2 release. Mechanistically, we show that intracellular S1P promotes deoxygenated Hb anchoring to the membrane, enhances the release of membrane-bound glycolytic enzymes to the cytosol, induces glycolysis and thus the production of 2,3-bisphosphoglycerate (2,3-BPG), an erythrocyte-specific glycolytic intermediate, which facilitates O2 release. Altogether, we reveal S1P as an intracellular hypoxia-responsive biolipid promoting erythrocyte glycolysis, O2 delivery and thus new therapeutic opportunities to counteract tissue hypoxia.


Current Opinion in Hematology | 2013

New insights into sickle cell disease: a disease of hypoxia.

Kaiqi Sun; Yang Xia

Purpose of reviewSickle cell disease (SCD) is a devastating genetic disorder caused by a single amino acid substitution in &bgr;-globin. Although the condition was first described more than a 100 years ago, treatment options remain scarce and unsatisfactory. This review summarizes recent findings that may provide novel insight into therapeutic approaches to SCD treatment. Recent findingsBecause of insufficient numbers of erythrocytes for oxygen delivery, SCD patients constantly face hypoxia. Adenosine is well known as a key signaling nucleoside that orchestrates a multifaceted physiological response to hypoxia. Recent studies have revealed that adenosine concentrations are significantly elevated in SCD and contribute to disease pathology by activating adenosine receptors on red blood cells. Apart from adenosine, hypoxia also causes hemoglobin release via hemolysis. Studies on free hemoglobin in circulation have uncovered another two important molecules: nitric oxide and heme oxygenase-1. SummaryThe core of SCD pathology is erythrocyte sickling under hypoxic conditions, leading to vaso-occlusion and hemolysis. Deeper and more comprehensive understanding of SCD as a disease of hypoxia will provide us new therapeutic targets for SCD treatment.


Blood | 2015

Elevated Adenosine Signaling Via Adenosine A2B Receptor Induces Normal and Sickle Erythrocyte Sphingosine Kinase 1 Activity

Kaiqi Sun; Yujin Zhang; Mikhail Bogdanov; Hongyu Wu; Anren Song; Jessica Li; William Dowhan; Modupe Idowu; Harinder S. Juneja; Jose G. Molina; Michael R. Blackburn; Rodney E. Kellems; Yang Xia

Erythrocyte possesses high sphingosine kinase 1 (SphK1) activity and is the major cell type supplying plasma sphingosine-1-phosphate, a signaling lipid regulating multiple physiological and pathological functions. Recent studies revealed that erythrocyte SphK1 activity is upregulated in sickle cell disease (SCD) and contributes to sickling and disease progression. However, how erythrocyte SphK1 activity is regulated remains unknown. Here we report that adenosine induces SphK1 activity in human and mouse sickle and normal erythrocytes in vitro. Next, using 4 adenosine receptor-deficient mice and pharmacological approaches, we determined that the A2B adenosine receptor (ADORA2B) is essential for adenosine-induced SphK1 activity in human and mouse normal and sickle erythrocytes in vitro. Subsequently, we provide in vivo genetic evidence that adenosine deaminase (ADA) deficiency leads to excess plasma adenosine and elevated erythrocyte SphK1 activity. Lowering adenosine by ADA enzyme therapy or genetic deletion of ADORA2B significantly reduced excess adenosine-induced erythrocyte SphK1 activity in ADA-deficient mice. Finally, we revealed that protein kinase A-mediated extracellular signal-regulated kinase 1/2 activation functioning downstream of ADORA2B underlies adenosine-induced erythrocyte SphK1 activity. Overall, our findings reveal a novel signaling network regulating erythrocyte SphK1 and highlight innovative mechanisms regulating SphK1 activity in normal and SCD.


Nature Communications | 2017

Erythrocytes retain hypoxic adenosine response for faster acclimatization upon re-ascent

Anren Song; Yujin Zhang; Leng Han; Gennady G. Yegutkin; Hong Liu; Kaiqi Sun; Angelo D'Alessandro; Jessica Li; Harry Karmouty-Quintana; Takayuki Iriyama; Tingting Weng; Shushan Zhao; Wei Wang; Hongyu Wu; Travis Nemkov; Andrew W. Subudhi; Sonja Jameson-Van Houten; Colleen G. Julian; Andrew T. Lovering; Kirk C. Hansen; Hong Zhang; Mikhail Bogdanov; William Dowhan; Jianping Jin; Rodney E. Kellems; Holger K. Eltzschig; Michael R. Blackburn; Robert C. Roach; Yang Xia

Faster acclimatization to high altitude upon re-ascent is seen in humans; however, the molecular basis for this enhanced adaptive response is unknown. We report that in healthy lowlanders, plasma adenosine levels are rapidly induced by initial ascent to high altitude and achieved even higher levels upon re-ascent, a feature that is positively associated with quicker acclimatization. Erythrocyte equilibrative nucleoside transporter 1 (eENT1) levels are reduced in humans at high altitude and in mice under hypoxia. eENT1 deletion allows rapid accumulation of plasma adenosine to counteract hypoxic tissue damage in mice. Adenosine signalling via erythrocyte ADORA2B induces PKA phosphorylation, ubiquitination and proteasomal degradation of eENT1. Reduced eENT1 resulting from initial hypoxia is maintained upon re-ascent in humans or re-exposure to hypoxia in mice and accounts for erythrocyte hypoxic memory and faster acclimatization. Our findings suggest that targeting identified purinergic-signalling network would enhance the hypoxia adenosine response to counteract hypoxia-induced maladaptation.


Cell Reports | 2016

Sustained Elevated Adenosine via ADORA2B Promotes Chronic Pain through Neuro-immune Interaction

Xia Hu; Morayo G. Adebiyi; Jialie Luo; Kaiqi Sun; Thanh Thuy T Le; Yujin Zhang; Hongyu Wu; Shushan Zhao; Harry Karmouty-Quintana; Hong Liu; Aji Huang; Yuan Edward Wen; Oleg Zaika; Mykola Mamenko; Oleh Pochynyuk; Rodney E. Kellems; Holger K. Eltzschig; Michael R. Blackburn; Edgar T. Walters; Dong Huang; Hongzhen Hu; Yang Xia

The molecular mechanisms of chronic pain are poorly understood and effective mechanism-based treatments are lacking. Here, we report that mice lacking adenosine deaminase (ADA), an enzyme necessary for the breakdown of adenosine, displayed unexpected chronic mechanical and thermal hypersensitivity due to sustained elevated circulating adenosine. Extending from Ada(-/-) mice, we further discovered that prolonged elevated adenosine contributed to chronic pain behaviors in two additional independent animal models: sickle cell disease mice, a model of severe pain with limited treatment, and complete Freunds adjuvant paw-injected mice, a well-accepted inflammatory model of chronic pain. Mechanistically, we revealed that activation of adenosine A2B receptors on myeloid cells caused nociceptor hyperexcitability and promoted chronic pain via soluble IL-6 receptor trans-signaling, and our findings determined that prolonged accumulated circulating adenosine contributes to chronic pain by promoting immune-neuronal interaction and revealed multiple therapeutic targets.


Haematologica | 2017

Hypoxia modulates the purine salvage pathway and decreases red blood cell and supernatant levels of hypoxanthine during refrigerated storage

Travis Nemkov; Kaiqi Sun; Julie A. Reisz; Anren Song; Tatsuro Yoshida; Andrew Dunham; Matthew J. Wither; Richard O. Francis; Robert C. Roach; Monika Dzieciatkowska; Stephen C. Rogers; Allan Doctor; Anastasios G. Kriebardis; Marianna H. Antonelou; Issidora S. Papassideri; Carolyn T. Young; Tiffany Thomas; Kirk C. Hansen; Steven L. Spitalnik; Yang Xia; James C. Zimring; Eldad A. Hod; Angelo D’Alessandro

Hypoxanthine catabolism in vivo is potentially dangerous as it fuels production of urate and, most importantly, hydrogen peroxide. However, it is unclear whether accumulation of intracellular and supernatant hypoxanthine in stored red blood cell units is clinically relevant for transfused recipients. Leukoreduced red blood cells from glucose-6-phosphate dehydrogenase-normal or -deficient human volunteers were stored in AS-3 under normoxic, hyperoxic, or hypoxic conditions (with oxygen saturation ranging from <3% to >95%). Red blood cells from healthy human volunteers were also collected at sea level or after 1–7 days at high altitude (>5000 m). Finally, C57BL/6J mouse red blood cells were incubated in vitro with 13C1-aspartate or 13C5-adenosine under normoxic or hypoxic conditions, with or without deoxycoformycin, a purine deaminase inhibitor. Metabolomics analyses were performed on human and mouse red blood cells stored for up to 42 or 14 days, respectively, and correlated with 24 h post-transfusion red blood cell recovery. Hypoxanthine increased in stored red blood cell units as a function of oxygen levels. Stored red blood cells from human glucose-6-phosphate dehydrogenase-deficient donors had higher levels of deaminated purines. Hypoxia in vitro and in vivo decreased purine oxidation and enhanced purine salvage reactions in human and mouse red blood cells, which was partly explained by decreased adenosine monophosphate deaminase activity. In addition, hypoxanthine levels negatively correlated with post-transfusion red blood cell recovery in mice and – preliminarily albeit significantly - in humans. In conclusion, hypoxanthine is an in vitro metabolic marker of the red blood cell storage lesion that negatively correlates with post-transfusion recovery in vivo. Storage-dependent hypoxanthine accumulation is ameliorated by hypoxia-induced decreases in purine deamination reaction rates.

Collaboration


Dive into the Kaiqi Sun's collaboration.

Top Co-Authors

Avatar

Yang Xia

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Rodney E. Kellems

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Yujin Zhang

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Anren Song

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Michael R. Blackburn

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Hong Liu

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Hongyu Wu

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Wei Wang

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Chen Ning

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Holger K. Eltzschig

University of Texas Health Science Center at Houston

View shared research outputs
Researchain Logo
Decentralizing Knowledge